Answer:
(3) 345 nm
Explanation:
<u>Given:</u>
Average C-C bond energy = 347 kJ/mol
<u>To determine:</u>
Wavelength of photon that can break a C-C bond
<u>Calculation:</u>
The energy (E) of a photon is related to its wavelength (λ) by the Planck's equation:

where h = Planck's constant = 6.626*10⁻³⁴ Js
c = speed of light = 3*10⁸ m/s


λ = 3.45*10⁻⁷ m
Since 1 nanometer (nm) = 10⁻⁹ m
The calculated wavelength corresponds to 345 nm
Answer: 2) 2HCl(sq) + CaCO3(s) CaCl2(sq) + CO2(g) + H2O (l) No of moles of CaCO3 = amount of the CaCO3 (g)/mw of CaCO3 (g/mole)= 0.8085 g/100 g/mole = 0.008085
Explanation:
Answer:
3 : 1
Explanation:
Let the rate of He be R1
Molar Mass of He (M1) = 4g/mol
Let the rate of O2 be R2
Molar Mass of O2 (M2) = 32g/mol
Recall:
R1/R2 = √(M2/M1)
R1/R2 = √(32/4)
R1/R2 = √8
R1/R2 = 3
The ratio of rate of effusion of Helium to oxygen is 3 : 1