The salt is a solid compound and is considered the "Solute" of the solution.
So, I don't know the answer for b but I think I found the answer for a.
I sincerely hope this isn't wrong
Leftover: approximately 11.73 g of sulfuric acid.
<h3>Explanation</h3>
Which reactant is <em>in excess</em>?
The theoretical yield of water from Al(OH)₃ is lower than that from H₂SO₄. As a result,
- Al(OH)₃ is the limiting reactant.
- H₂SO₄ is in excess.
How many <em>moles</em> of H₂SO₄ is consumed?
Balanced equation:
2 Al(OH)₃ + 3 H₂SO₄ → Al₂(SO₄)₃ + 6 H₂O
Each mole of Al(OH)₃ corresponds to 3/2 moles of H₂SO4. The formula mass of Al(OH)₃ is 78.003 g/mol. There are 15 / 78.003 = 0.19230 moles of Al(OH)₃ in the five grams of Al(OH)₃ available. Al(OH)₃ is in excess, meaning that all 0.19230 moles will be consumed. Accordingly, 0.19230 × 3/2 = 0.28845 moles of H₂SO₄ will be consumed.
How many <em>grams</em> of H₂SO₄ is consumed?
The molar mass of H₂SO₄ is 98.076 g.mol. The mass of 0.28845 moles of H₂SO₄ is 0.28845 × 98.076 = 28.289 g.
How many <em>grams</em> of H₂SO₄ is in excess?
40 grams of sulfuric acid H₂SO₄ is available. 28.289 grams is consumed. The remaining 40 - 28.289 = 11.711 g is in excess. That's closest to the first option: 11.73 g of sulfuric acid.
The enthalpy of reaction or ∆H reaction is the difference between the bond energy of the reactants and the bond energy of the products.
<h3>What is ∆H reaction?</h3>
The term ∆H reaction refers to the heat that is evolved or absorbed in a chemical reaction. It is also known as the enthalpy of reaction.
The question is incoherent but I will try to answer as much as possible. Using the values of bond energy, ∆H reaction = Bond energy of reactants - bond energy of products. This will give us the enthalpy of reaction.
Learn more about bond energy: brainly.com/question/1657608