Answer:
-72
Step-by-step explanation:
R=10
because 10 divided by ten =1 +4 =5
Answer:
h(8q²-2q) = 56q² -10q
k(2q²+3q) = 16q² +31q
Step-by-step explanation:
1. Replace x in the function definition with the function's argument, then simplify.
h(x) = 7x +4q
h(8q² -2q) = 7(8q² -2q) +4q = 56q² -14q +4q = 56q² -10q
__
2. Same as the first problem.
k(x) = 8x +7q
k(2q² +3q) = 8(2q² +3q) +7q = 16q² +24q +7q = 16q² +31q
_____
Comment on the problem
In each case, the function definition says the function is not a function of q; it is only a function of x. It is h(x), not h(x, q). Thus the "q" in the function definition should be considered to be a literal not to be affected by any value x may have. It could be considered another way to write z, for example. In that case, the function would evaluate to ...
h(8q² -2q) = 56q² -14q +4z
and replacing q with some value (say, 2) would give 196+4z, a value that still has z as a separate entity.
In short, I believe the offered answers are misleading with respect to how you would treat function definitions in the real world.
We know that the equation of the line is in the form
. To find b, we can use the fact that (6,-5) lies on the line, meaning that both sides of the equation are equal when x=6 and y=-5.

Hence, the equation of the line is
, and its graph looks something like follows.
Answer:
C,
Step-by-step explanation:
:)