39.
9.2 x 10^3, 10,000, 1.8 x 10^4
40.
0.005, 5.25 x10^-3, 5.0 x 10^-2
Answer:
<u>II. Second table</u>
A B Total
C 0.25 0.75 1.00
D 0.35 0.65 1.00
Total 0.30 0.70 1.00
Explanation:
<h2>Tables</h2>
<u>I. First table </u>
A B Total
C 0.25 0.25 0.50
D 0.25 0.25 0.50
Total 0.50 0.25 1.00
<u>II. Second table</u>
A B Total
C 0.25 0.75 1.00
D 0.35 0.65 1.00
Total 0.30 0.70 1.00
<u>III. Third table</u>
<u></u>
A B Total
C 0.75 0.25 0.50
D 0.25 0.75 0.50
Total 0.50 0.50 1.00
<u>IV. Fourth table</u>
A B Total
C 0.65 0.35 1.00
D 0.35 0.65 1.00
Total 1.00 1.00 1.00
<h2>Solution</h2>
A <em>conditional relative frequency table</em> shows the relative frequencies determined upon a row or column.
There are two types of relative conditional frequency table: 1) row conditional relative frequency, and 2) column conditional relative frequency.
When you divide the joint frequency by the marginal frequency of the column total you have the row conditional frequency table. When you dividethe joint frequency by the row total you have the colum conditional frequency table.
In a row conditional relative frequency each total of the right hand column equals 1. This is the case of the second table.
In a column conditional relative frequency each total of the bottom row equals 1. This is not happening with any of the shown tables.
Hence, only the second table could be a conditional relative frequency table.
Angle R= 36°
180-68-76=36°
Answer:
Step-by-step explanation:
0.5
Answer:
True. See explanation below
Step-by-step explanation:
Previous concepts
Analysis of variance (ANOVA) "is used to analyze the differences among group means in a sample".
The sum of squares "is the sum of the square of variation, where variation is defined as the spread between each individual value and the grand mean"
If we assume that we have groups and on each group from we have individuals on each group we can define the following formulas of variation:
And we have this property
The degrees of freedom for the numerator on this case is given by where k represent the number of groups.
The degrees of freedom for the denominator on this case is given by .
And the total degrees of freedom would be
And the we can find the F statistic