Answer: Choice B) {3, 5, sqrt(34)}
=====================================
Explanation:
We can only have a right triangle if and only if a^2+b^2 = c^2 is a true equation. The 'c' is the longest side, aka hypotenuse. The legs 'a' and 'b' can be in any order you want.
-----------
For choice A,
a = 2
b = 3
c = sqrt(10)
So,
a^2+b^2 = 2^2+3^2 = 4+9 = 13
but
c^2 = (sqrt(10))^2 = 10
which is not equal to 13 from above. Cross choice A off the list.
-----------
Checking choice B
a = 3
b = 5
c = sqrt(34)
Square each equation
a^2 = 3^2 = 9
b^2 = 5^2 = 25
c^2 = (sqrt(34))^2 = 34
We can see that
a^2+b^2 = 9+25 = 34
which is exactly equal to c^2 above. This confirms the answer.
-----------
Let's check choice C
a = 5, b = 8, c = 12
a^2 = 25, b^2 = 64, c^2 = 144
So,
a^2+b^2 = c^2
25+64 = 144
89 = 144
which is a false equation allowing us to cross choice C off the list.
Answer:
n = - 30
Step-by-step explanation:
Eight plus the quotient of a number and 3 is −2
Expressing in mathematical terms, we have;
8 + (n/3) = -2
To solve for n;
Multiply all through by 3.
3*8 + 3(n/3) = 3 * (-2 )
24 + n = - 6
n = -6 - 24
n = - 30
Answer:
When you distribute the 7 to each set you get 14-21n and 14-21n
Step-by-step explanation:
13 + (-12) - (-5)
13 - 12 + 5
1 + 5
= 6.
Answer is A)
Answer:
C, D, J
Step-by-step explanation:
Points to the left of the y-axis have a negative x- value
Points to the right of the y-axis have a positive x- value
Points on the y-axis have an x- value of zero
C(- 4, 5), D(- 9, 9 ), J(- 9, 0) ← are the coordinates of the points
All have a negative x- value