Answer:
The pressure at the top of the step is 129.303 kilopascals.
Explanation:
From Hydrostatics we find that the pressure difference between extremes of the water column is defined by the following formula, which is a particular case of the Bernoulli's Principle (
):
(1)
,
- Total pressures at the bottom and at the top, measured in pascals.
- Density of the water, measured in kilograms per cubic meter.
- Height difference of the step, measured in meters.
If we know that
,
,
and
, then the pressure at the top of the step is:




The pressure at the top of the step is 129.303 kilopascals.
Answer:

Explanation:
When she moved a distance of 1 m from mid point she observe first destructive interference due to two speakers
so we can say that path difference of sound due to two speakers will be equal to half of the wavelength
so path difference is given as

so it will be


now we know that


now frequency of sound is given as



Simply, apply the formula

and insert the values of m = mass, v = velocity and E = Energy.
The result will be

, m = 1 kg
The question is incomplete.
The distance between the Moon and Earth influences: 1) the attractive gravitational force between them, 2) the tides, 3) the eclipses, 4) the period of each full turn of the moon around the Earth.
Assuming the question refers to the gravitational attraction, we must use the fact that, as per, Newton's Universal Gravitaional Law, the attractive force between the two bodies is inversely related to the square distance that separates them.
Then, if the Moon were twice as far, the gravitational pull would be one fourth (1/4) of actual pull.
Answer:
The wavelength of the wave is 20 m.
Explanation:
Given that,
Amplitude = 10 cm
Radial frequency 
Bulk modulus = 40 MPa
Density = 1000 kg/m³
We need to calculate the velocity of the wave in the medium
Using formula of velocity

Put the value into the formula


We need to calculate the wavelength
Using formula of wavelength


Put the value into the formula


Hence, The wavelength of the wave is 20 m.