Since velocity is vector quantity, it'll depend on both direction as well as magnitude hence options C and D are rejected.
Speed = distance/time
Therefore, unit of velocity is m/s.
Answer:
Average net force, F = 15157.15 N
Explanation:
It is given that,
The mass of the car and riders is,
Initial speed of the car, u = 0
Final speed of the car, v = 43.4 m/s
Time, t = 8.59 seconds
We need to find the average net force exerted on the car and riders by the magnets. It can be calculated using second law of motion as :
F = m a
F = 15157.15 N
So, the average net force exerted on the car and riders by the magnets. Hence, this is the required solution.
Answer:
the only effect it has is to create more induced charge at the closest points, but the net face remains zero, so it has no effect on the flow.
Explanation:
We can answer this exercise using Gauss's law
Ф = ∫ e . dA = / ε₀
field flow is directly proportionate to the charge found inside it, therefore if we place a Gaussian surface outside the plastic spherical shell. the flow must be zero since the charge of the sphere is equal induced in the shell, for which the net charge is zero. we see with this analysis that this shell meets the requirement to block the elective field
From the same Gaussian law it follows that if the sphere is not in the center, the only effect it has is to create more induced charge at the closest points, but the net face remains zero, so it has no effect on the flow , so no matter where the sphere is, the total induced charge is always equal to the charge on the sphere.
Answer:
(a) p = 3.4 kg-m/s (b) 37.78 N.
Explanation:
Mass of a basketball, m = 0.4 kg
Initial velocity of the ball, u = -5.7 m/s (as it comes down so it is negative)
It rebounds upward at a speed of 2.8 m/s (as it rebounds so positive)
(a) Change in momentum = final momentum - initial momentum
p = m(v-u)
p = 0.4 (2.8-(-5.7))
p = 3.4 kg-m/s
(b) Impulse = change in momentum
Ft = 3.4
We have, t = 0.09 s
Hence, this is the required solution.