Answer:
D. 2^(3/2)
Explanation:
Given that
T² = A³
Let the mean distance between the sun and planet Y be x
Therefore,
T(Y)² = x³
T(Y) = x^(3/2)
Let the mean distance between the sun and planet X be x/2
Therefore,
T(Y)² = (x/2)³
T(Y) = (x/2)^(3/2)
The factor of increase from planet X to planet Y is:
T(Y) / T(X) = x^(3/2) / (x/2)^(3/2)
T(Y) / T(X) = (2)^(3/2)
The answer to your question is B- They both described the inner part otherwise known as the inner core.
The inner core is hotter than the surface of the sun. The inner core is made out of iron and nickel. The inner core is extremely hot and is the last layer. It is a solid because of all the pressure from the other layers putting there weight onto this layer.
If the Earth didn't tilt then we wouldn't have seasons.
Answer:
The change in velocity is 15.83 [m/s]
Explanation:
Using the Newton's second law we have:
ΣF = m*a
The force in the graph is 185 N, therefore:
![185=0.369*a\\Where\\a=acceleration made it by the force [m/s^2]](https://tex.z-dn.net/?f=185%3D0.369%2Aa%5C%5CWhere%5C%5Ca%3Dacceleration%20made%20it%20by%20the%20force%20%5Bm%2Fs%5E2%5D)
![a=501.35[m/s^2]](https://tex.z-dn.net/?f=a%3D501.35%5Bm%2Fs%5E2%5D)
Now using the following kinematic equation:
![V^{2}=Vi^{2} + 2*a*(x-xi) \\where\\V=final velocity [m/s]\\Vi= initial velocity [m/s] = 0 the hockey disk is in rest when receives the hit.\\ x = Final position [m] = 0.4 m\\xi = initial position [m] = 0.15m\\](https://tex.z-dn.net/?f=V%5E%7B2%7D%3DVi%5E%7B2%7D%20%2B%202%2Aa%2A%28x-xi%29%20%5C%5Cwhere%5C%5CV%3Dfinal%20velocity%20%5Bm%2Fs%5D%5C%5CVi%3D%20initial%20velocity%20%5Bm%2Fs%5D%20%3D%200%20the%20hockey%20disk%20is%20in%20rest%20when%20receives%20the%20hit.%5C%5C%20x%20%3D%20Final%20position%20%5Bm%5D%20%3D%200.4%20m%5C%5Cxi%20%3D%20initial%20position%20%5Bm%5D%20%3D%200.15m%5C%5C)
Now replacing the values:
![V^{2}=0 + 2*501.35*(0.4-0.15)\\ \\V= 15.83[m/s]](https://tex.z-dn.net/?f=V%5E%7B2%7D%3D0%20%2B%202%2A501.35%2A%280.4-0.15%29%5C%5C%20%5C%5CV%3D%2015.83%5Bm%2Fs%5D)