The distance covered by car is equal to (assuming it is moving by uniform motion) the product between the car's speed and the time of the car ride, 4 h:

where

is the car's speed

is the duration of the car ride
Similarly, the distance covered by train is equal to the product between the train's speed and the duration of the train ride, 7 h:

The total distance covered is S=255 km, which is the sum of the distances covered by car and train:

which becomes

(1)
we also know that the train speed is 5 km/h greater than the car's speed:

(2)
If we put (2) into (1), we find

and if we solve it, we find


So, the car speed is 20 km/h and the train speed is 25 km/h.
The correct answer is option (C) the temperature of the shirt will increase because all wavelengths of light are absorbed by the shirt.
The relationship of heat and light
- Heat is a measure of the movement of particles in the body, the more particles move, the warmer the body becomes.
- When the body absorbs light radiation, its particles vibrate in accordance with the electromagnetic radiation's wavelengths, which causes an increase in the temperature with the increase in particle movement.
- The more wavelengths of radiation absorbed by an object, produces more heat.
Learn more about the Wavelength of light with the help of the given link:
brainly.com/question/13961990
#SPJ4
Answer:
D. 15 m/s downward
Explanation:
v = at + v₀
v = (-9.8 m/s²) (1.5 s) + (0 m/s)
v = -14.7 m/s
Rounded to two significant figures, the answer is D, 15 m/s downward.
Explanation:
In everyday use and in kinematics, the speed of an object is the magnitude of the rate of change of its position with time or the magnitude of the change of its position per unit of time; it is thus a scalar quantity.
SI unit: m/s, m s−1
s=d/t
Answer:
The angle between the emergent blue and red light is 
Explanation:
We have according to Snell's law

Since medium from which light enter's is air thus 
Thus for blue incident light we have

Similarly using the same procedure for red light we have

Thus the absolute value of angle between the refracted blue and red light is
