Answer : The fuel value and the fuel density of pentane is, 49.09 kJ/g and
respectively.
Explanation :
Fuel value : It is defined as the amount of energy released from the combustion of hydrocarbon fuels. The fuel value always in positive and in kilojoule per gram (kJ/g).
As we are given that:

Fuel value = 
Molar mass of pentane = 72 g/mol
Fuel value = 
Fuel value = 49.09 kJ/g
Now we have to calculate the fuel density of pentane.
Fuel density = Fuel value × Density
Fuel density = (49.09 kJ/g) × (0.626g/mL)
Fuel density = 30.73 kJ/mL = 
Thus, the fuel density of pentane is 
Answer:
Molecular formula
Explanation:
Molecular formula in the first place is required to understand which compound we have. We then should refer to the periodic table and find the molecular weight for each atom. Adding individual molecular weights together would yield the molar mass of a compound.
Then, dividing the total molar mass of a specific atom by the molar mass of a compound and converting into percentage will provide us with the percentage of that specific atom.
E. g., calculate the percent composition of water:
- molecular formula is
; - calculate its molar mass: [tex]M = 2M_H + M_O = 2\cdot 1.00784 g/mol + 16.00 g/mol = 18.016 g/mol;
- find the percentage of hydrogen: [tex]\omega_H = \frac{2\cdot 1.00784 g/mol}{18.016 g/mol}\cdot 100 \% = 11.19 %;
- find the percentage of oxygen: [tex]\omega_O = \frac{16.00 g/mol}{18.016 g/mol}\cdot 100 \% = 88.81 %.
I believe that the answer is 12 because there is already 3 O molecules and since its in parentheses with 3 outside it that means that there are 3 of those CO molecules meaning that for every 1 CO there will be 3 O’s so 3, four times Is 12
Answer:
The higher concentrations of greenhouse gases—and carbon dioxide in particular—is causing extra heat to be trapped and global temperatures to rise.
Explanation:
Part A
Spell out the full name of the compound.
Part B
Spell out the full name of the compound.
Part C
Spell out the full name of the compound.
Part D
Spell out the full name of the compound.
IUPAC naming:
In organic chemistry, chemical compounds are named by a standardized method known as the IUPAC system. These four examples are all hydrocarbons with double and triple bonds. The names of the compounds are based on the length of the carbon chain, the position of the double or triple bonds and the position of any carbon groups branched off of the main chain.