1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina-Kira [14]
3 years ago
6

Mariana drives for 920 hour at a constant speed of 52 miles per hour.Write the amount of time Mariana drives as a decimal.

Mathematics
1 answer:
ipn [44]3 years ago
7 0

Answer:

920÷100=9,2

Step-by-step explanation:

If you want to write a number in decimal you must divide the number by 100

You might be interested in
There are 24 students on the field trip. How many parents will be needed to put them into groups of 3?
Vika [28.1K]

24 students / 3 groups = 8

8 parents will be needed to put the students into groups of 3.


6 0
3 years ago
Kenny's scores the first 5 times he played a video game are listed below. 38, 51, 64, 77, 90 Kenny's scores follow a pattern. If
gayaneshka [121]

Kenny's score on his 72nd game played is 961

<em><u>Solution:</u></em>

Given that the first 5 score of Kenny are listed below:

38, 51, 64, 77, 90

Kenny's scores follow a pattern

<em><u>To find: Kenny's score on his 72nd game played</u></em>

Let us first find the pattern followed

38, 51, 64, 77, 90

<em><u>Find the difference between terms</u></em>

51 - 38 = 13

64 - 51 = 13

77 - 64 = 13

90 - 77 = 13

So the difference between terms is constant

So the sequence is arithmetic sequence

An arithmetic sequence is a sequence of numbers such that the difference of any two successive members of the sequence is a constant

<em><u>The formula for nth term of arithmetic sequence is given as:</u></em>

a_n = a_1 + (n-1)d

a_n = the nᵗʰ term in the sequence

a_1 = the first term in the sequence

d = the common difference between terms

Here d = 13 and a_1 = 38

So we get,

a_n = 38 + (n-1) \times 13

<em><u>To find the score of 72nd game, substitute n = 72</u></em>

a_{72} = 38 + (72-1) \times 13\\\\a_{72} = 38 + 71 \times 13\\\\a_{72} = 38 + 923\\\\a_{72} = 961

Thus Kenny's score on his 72nd game played is 961

7 0
3 years ago
SOMEONE PLZ HELP ME ON THIS PROBLEM!!!!! I WILL GIVE BRAINLIEST TO THE BEST ANSWER!!!!!
NeX [460]

Answer:

D

Step-by-step explanation:

End behaviour refers to the asymptotes, which both exponential functions have the same one at y = 2. However, they have different y - intercepts. The first one has a y - intercept of 4 and the second one has a y - intercept of 6. Thus, the answer is D.

4 0
3 years ago
Read 2 more answers
Lily ran 100 meters in 15 seconds. How long did she take to run 2 meters
denis23 [38]
.15 seconds because I said
7 0
3 years ago
Read 2 more answers
I need help solving this problem.
madam [21]

(f+g-k)(x) means to add the equations f(x) and g(x) then subtract k(x)

2x^2 + 3x + 4x - 9 = 2x^2 +7x -9

2x^2 + 7x - 9 - x^2 -7x = x^2 -9

The answer is : x^2 - 9

6 0
3 years ago
Read 2 more answers
Other questions:
  • Suzanne bought 50 apples at the apple orchard. She bought 4 times as many red apples as green apples. How many more apples did s
    7·2 answers
  • Used to locate a point on a coordinate plane
    12·1 answer
  • 49 is 35% of what number? Use percent equation
    6·1 answer
  • Factor each <br>A.) x^3+7x^2+10x=0 <br>B.) x^2 -6x+8=0
    6·1 answer
  • UREKA MATH
    14·1 answer
  • A flagpole is 10 m tall and has a shadow that is 7 m long. At the same time how tall is a nearby building if its shadow is 28m l
    14·1 answer
  • Which set of ordered pairs represents a function?
    12·1 answer
  • Let $f(x) = 4x - 7$, $g(x) = (x + 1)^2$, and $s(x) = f(x) + g(x)$. What is $s(3)$?
    11·2 answers
  • When Mr. Davidson preheated his oven, the oven's temperature rose 3 degrees in 1 6 of a minute. At that rate, how much will the
    11·1 answer
  • A rug measures 2 1/3 yards by 11/4 yards. What is the area of the rug
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!