Answer:
1953125
Step-by-step explanation:
5: 625
6: 3125
7: 15625
8: 78125
9: 390625
10: 1953125
Sequence
×5
Answer:
if adding its 139 if u subtract then its 11
Step-by-step explanation:
Let's call x1: The rate per hour of the number one mechanic. X2: The rate per hour of mechanic number two. The first thing you should do is identify the system of equations that best describes the problem. In this case it is a system of 2 equations with two unknowns which when solved gives a total of x1 = 85 $ / h and x2 = 50 $ / h. Attached solution.
Answer:
and
.
Step-by-step explanation:
If we have to different functions like the ones attached, one is a parabolic function and the other is a radical function. To know where
, we just have to equalize them and find the solution for that equation:

So, applying the zero product property, we have:
![x=0\\x^{3}-1=0\\x^{3}=1\\x=\sqrt[3]{1}=1](https://tex.z-dn.net/?f=x%3D0%5C%5Cx%5E%7B3%7D-1%3D0%5C%5Cx%5E%7B3%7D%3D1%5C%5Cx%3D%5Csqrt%5B3%5D%7B1%7D%3D1)
Therefore, these two solutions mean that there are two points where both functions are equal, that is, when
and
.
So, the input values are
and
.
Answer: (a) P(no A) = 0.935
(b) P(A and B and C) = 0.0005
(c) P(D or F) = 0.379
(d) P(A or B) = 0.31
Step-by-step explanation: <u>Pareto</u> <u>Chart</u> demonstrates a relationship between two quantities, in a way that a relative change in one results in a change in the other.
The Pareto chart below shows the number of people and which category they qualified each public school.
(a) The probability of a person not giving an A is the difference between total probability (1) and probability of giving an A:
P(no A) = 
P(no A) = 1 - 0.065
P(no A) = 0.935
b) Probability of a grade better than D, is the product of the probabilities of an A, an B and an C:
P(A and B and C) = 
P(A and B and C) = 
P(A and B and C) = 0.0005
c) Probability of an D or an F is the sum of probabilities of an D and of an F:
P(D or F) = 
P(D or F) = 
P(D or F) = 0.379
d) Probability of an A or B is also the sum of probabilities of an A and of an B:
P(A or B) = 
P(A or B) = 
P(A or B) = 0.31