Answer:
Its okay, I bet you will get to 1000 points some time.
Im gonna give out 50 free points right now so look out for that.
Answer:
Complex carbohydrates are MADE up of sugar molecules that are strung together in long complex chains, complex carbohydrates are found in food like peas, beans, whole grains and vegetables.
Explanation:
Both SIMPLE and COMPLEX carbohydrates are turned into glucose (blood sugar) in the body and are used as energy.
I really hoped this helped some, I tried to make it specific :[
Answer:
The culture might not be stained properly or the culture might be too old.
Explanation:
Gram staining is done to differentiate between gram-positive and gram-negative bacteria according to the difference in their cell wall. In gram staining, the gram-positive bacteria appears violet and gram-negative bacteria appear pink in color.
Therefore if a pure culture contains have both red and purple cocci that it can be concluded that the gram stating was not done properly like too much destaining was done or too much safranin was used or maybe the culture is too old so that cell wall of some bacteria degrades.
Answer:
The preceding section reviewed the major metabolic reactions by which the cell obtains and stores energy in the form of ATP. This metabolic energy is then used to accomplish various tasks, including the synthesis of macromolecules and other cell constituents. Thus, energy derived from the breakdown of organic molecules (catabolism) is used to drive the synthesis of other required components of the cell. Most catabolic pathways involve the oxidation of organic molecules coupled to the generation of both energy (ATP) and reducing power (NADH). In contrast, biosynthetic (anabolic) pathways generally involve the use of both ATP and reducing power (usually in the form of NADPH) for the production of new organic compounds. One major biosynthetic pathway, the synthesis of carbohydrates from CO2 and H2O during the dark reactions of photosynthesis, was discussed in the preceding section. Additional pathways leading to the biosynthesis of major cellular constituents (carbohydrates, lipids, proteins, and nucleic acids) are reviewed in the sections that follow.
Go to:
Carbohydrates
In addition to being obtained directly from food or generated by photosynthesis, glucose can be synthesized from other organic molecules. In animal cells, glucose synthesis (gluconeogenesis) usually starts with lactate (produced by anaerobic glycolysis), amino acids (derived from the breakdown of proteins), or glycerol (produced by the breakdown of lipids). Plants (but not animals) are also able to synthesize glucose from fatty acids—a process that is particularly important during the germination of seeds, when energy stored as fats must be converted to carbohydrates to support growth of the plant. In both animal and plant cells, simple sugars are polymerized and stored as polysaccharides.
Gluconeogenesis involves the conversion of pyruvate to glucose—essentially the reverse of glycolysis. However, as discussed earlier, the glycolytic conversion of glucose to pyruvate is an energy-yielding pathway, generating two molecules each of ATP and NADH. Although some reactions of glycolysis are readily reversible, others will proceed only in the direction of glucose breakdown, because they are associated with a large decrease in free energy. These energetically favorable reactions of glycolysis are bypassed during gluconeogenesis by other reactions (catalyzed by different enzymes) that are coupled to the expenditure of ATP and NADH in order to drive them in the direction of glucose synthesis. Overall, the generation of glucose from two molecules of pyruvate requires four molecules of ATP, two of GTP, and two of NADH. This process is considerably more costly than the simple reversal of glycolysis (which would require two molecules of ATP and two of NADH), illustrating the additional energy required to drive the pathway in the direction of biosynthesis.
Answer:
(a) an aquaporin
Explanation:
An aquaporin is a water channel which forms a pore in the cell membrane and facilitates the movement of water. Aquaporin is an integral membrane protein (permanently attached to the membrane) that enables the in and out flow of the water. This channel also prevents the passage of ions and other solutes, so it cannot change the voltage. There are four types of aquaporins, and they are mostly found in the kidney with the function of water reabsorption.