Answer:
<em>Two</em><em> </em><em>sides</em><em> </em><em>and</em><em> </em><em>angle</em><em> </em><em>between</em><em> </em><em>them</em><em> </em><em>is</em><em> </em><em>given</em><em> </em>
<span>Assume: neglect of the collar dimensions.
Ď_h=(P*r)/t=(5*125)/8=78.125 MPa ,Ď_a=Ď_h/2=39 MPa
τ=(S*Q)/(I*b)=(40*〖10〗^3*π(〖0.125〗^2-〖0.117〗^2 )*121*〖10〗^(-3))/(π/2 (〖0.125〗^4-〖0.117〗^4 )*8*〖10〗^(-3) )=41.277 MPa
@ Point K:
Ď_z=(+M*c)/I=(40*0.6*121*〖10〗^(-3))/(8.914*〖10〗^(-5) )=32.6 MPa
Using Mohr Circle:
Ď_max=(Ď_h+Ď_a)/2+âš(Ď„^2+((Ď_h-Ď_a)/2)^2 )
Ď_max=104.2 MPa, Ď„_max=45.62 MPa</span>
Answer:
A. the Moon has a larger acceleration than Earth, because it has a smaller mass.
Explanation:
A. the Moon has a larger acceleration than Earth, because it has a smaller mass.
According to Newton's second law F=ma, if we solve for a we have that
a=F/m, the smaller the mass the larger the acceleration given the force is the same, in this case the moon has a smaller mass and therefore a larger acceleration
Answer:
780 J
Explanation:
W=\int _{\:0}^{50}0.624xdx
The focal length, like you said it's the distance between the FOCAL point and the mirror.