Answer:


Explanation:
k = Coulomb constant = 
Q = Charge
r = Distance = 8 cm
R = Radius = 4 cm
Electric field is given by

Volume charge density is given by

The volume charge density for the sphere is 

The magnitude of the electric field is 
19,999,985 nomas creo y soy positivo que si es pero puedes ablar ingles
A gravitational force between objects depends on two things- their masses and the distance between them. So the greater the mass and the less distance there is, the more gravitational force and is the mass is less and the distance is great the gravitational force is weak