Photosynthesis is the process by which plants take in carbon and use it for energy and produce oxygen.
Answer:
1. K<10−3
Explanation:
Equilibrium Constant is an expression which involves the concentration of the product divided by the concentration of the reactant molecules.
However the concentration of the pure liquid and pure solid is regarded as 1.
Equilibrium expression for the equation 2H2(g)+O2(g)⇌2H2O(g)
Equilibrium Constant = [H2O]^2/[H2]^2 x [O2]
Since H2O is a pure liquid, its concentration = 1
There fore;
Equilibrium Constant = 1/[H2]^2 x [O2]
This shows that the Equilibrium Constant of the equation will be less than 1 and greater than 0.
0.300 M IKI represents the
concentration which is in molarity of a potassium iodide solution. This means
that for every liter of solution there are 0.300 moles of potassium iodide. Knowing
that molarity is a ratio of solute to solution.
By using a conversion factor:
100 ml x (1L / 1000 mL) x (0.300
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 4.98 g
Therefore, in the first
conversion by simply converting the unit of volume to liter, Molarity is in L
where the volume is in liters. The next step is converted in moles from volume
by using molarity as a conversion factor which is similar to how density can be
used to convert between volume and mass. After converting to moles it is simply
used as molar mass of Kl which is obtained from periodic table to convert from
mole to grams.
In order to get the grams of IKI
to create a 100 mL solution of 0.600 M IKI, use the same formula as above:
100 ml x (1L / 1000 mL) x (0.600
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 9.96 g
Answer:
= 25 ppm
Explanation:
- PPM also refers to parts per million, it represents a low concentration of a solution. It represents 0.001 gram or a milligram in a 1000 mL, which equivalent to 1 mg per liter.
Given; a sample size of 2000 g contained 0.050 g DDT
It means, 2000 mL sample contained 50 mg DDT
Therefore in ppm we get;
= 50 mg/ 2 L
= 25 mg/L
<u>= 25 ppm</u>
The answer is (3). The reaction that can occur at the anode is oxidation reaction which will lose electrons. So (1) and (2) are not correct. For (4) Fe3+ can not lose electrons again.