Answer:
1.004×10²²
Explanation:
The molar mass of carbon is 12 g/mol
which means that:
<u>1 mole of carbon atoms has a mass of 12 grams.</u>
Since, diamond is a allotrope of carbon.
Mass of 1.00-carat diamond in grams is:
1.00 carat = 0.200 g
<u>
Since, 1 mole of C contains 6.022×10²³ atoms of C</u>
So,
12 grams contains 6.022×10²³ atoms of C
1 gram contains 6.022×10²³/ 12 atoms of C
0.200 gram contains (6.022×10²³/ 12)×0.200 atoms of C
Thus,
<u>1 carat diamond contains 1.004×10²² atoms of C.</u>
Answer : The molecule
is a polar molecule.
Explanation :
Polar molecule : When the arrangement of the molecule is asymmetrical then the molecule is polar.
Non-polar molecule : When the arrangement of the molecule is symmetrical then the molecule is non-polar.
The given molecule is, 
The electronegativities of oxygen and fluorine are different. The molecular geometry of
is bent. As, Fluorine is more elctronegative than the oxygen. So, the arrows putting towards the more electronegative element i.e, fluorine. These arrows do not balance each other. Due to this, the asymmetrical arrangement of these bonds makes the molecule polar.
Hence, the given molecule
is polar.
Answer:
The final pressure is 90.1 atm.
Explanation:
Assuming constant temperature, we can solve this problem by using <em>Boyle's Law</em>, which states:
Where in this case:
We <u>input the given data</u>:
- 159 atm * 463 L = P₂ * 817 L
And <u>solve for P₂</u>:
The final pressure is 90.1 atm.
Answer:
%KCl = 7.05%
%Water = 92.95%
Explanation:
Step 1: Given data
- Mass of KCl (solute): 36 g
- Mass of water (solvent): 475 g
Step 2: Calculate the mass of the solution
The mass of the solution is equal to the sum of the masses of the solute and the solvent.
m = 36 g + 475 g = 511 g
Step 3: Calculate the mass percentage of the solution
We will use the following expression.
%Component = mComponent/mSolution × 100%
%KCl = 36 g/511 g × 100% = 7.05%
%Water = 475 g/511 g × 100% = 92.95%
<span>The old car left on the side of the road showed signs of corrosion. We call this common chemical reaction rusting. The equation for this reaction can be written as 4Fe + 3O2 → 2Fe2O3. What are the reactants in the rusting process?
</span>
C. Iron and Oxygen