1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wittaler [7]
3 years ago
11

Please helpppp. It's due in an hour

Mathematics
1 answer:
TEA [102]3 years ago
4 0

Answer:

sowwy

Step-by-step explanation:

i can't help WITH MY SMALL BRAIN

You might be interested in
PLEASE ANSWER ASAP! MUST BE CORRECT! MORE POINTS GIVEN!!!
Tasya [4]
These are the two rules for when a and b are positive numbers.
a + b = b + a
a - b ≠ b -a
a - b = -b + a

For example:

5.71 + 2.84 = 2.84 + 5.71
8.55 = 8.55

5.71 - 2.84 ≠ 2.84 - 5.71
2.87 ≠ -2.87

5.71 - 2.84 = -2.84 + 5.71
2.87 = 2.87



These are the rules for when a and b are negative numbers.
a + b = b + a
a - b = b + a

For example,

-6.2 + (-3.96) = -3.96 + (-6.2)
-6.2 - 3.96 = -3.96 - 6.2
-10.16 = -10.16

-6.2 - (3.96) = -3.96 + (-6.2)
-10.16 = -10.16



Also, if a is a positive number, while b is a negative number, we see these rules:
a + b = a - b
a - b = a + b

For example,

5.71 + (-6.2) = 5.71 - 6.2
-0.49 = -0.49

5.71 - (-6.2) = 5.71 + 6.2
11.91 = 11.91


Also, if a is a negative number while b is a positive number, then these rules will apply:
a + b = b - a
a - b = -b - a

For example,

-3.96 + 2.84 = 2.84 - 3.96
-1.12 = <span>-1.12
</span>
-3.96 - 2.84 = -2.84 - 3.96
-6.8 = -6.8


I hope this helps! :)
4 0
2 years ago
Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based
notsponge [240]

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

6 0
3 years ago
Write the following in the ratio form a) 0.5 b) 0.6 c) 1.25 d) 3.4​
alex41 [277]

Answer:

A) 1:2

B) 3:5

C) 5:4

D) 17:5

Step-by-step explanation:

Step 1) Convert the decimal number to a fraction

Step 2) Multiply the numerator and denominator by 10 to eliminate the decimal point.

Step 3) Simplify the fraction in the previous step by dividing the numerator and the denominator by the greatest common factor (GCF)

Step 4) Convert the fraction in the previous step to a ratio by replacing the divider line with a colon

Heres an example. I'll do the last one.

3.4 = 3.4/1

(3.4 x10) /(1 x 10)= 34/10

34 /2 = 17

10/2  = 5

17/5 = 17:5

5 0
2 years ago
40 is what percent of 49​
Harrizon [31]

Answer:

81.63

Step-by-step explanation:

40: 49*100 =

(40*100): 49 =

4000: 49 = 81.63

4 0
2 years ago
Read 2 more answers
Brainliest! please help &lt;3
Viefleur [7K]

Answer: The answer is B

Step-by-step explanation:

7 0
2 years ago
Other questions:
  • There are $5$ girls and $5$ boys in a chess club. The club holds a round-robin tournament in which every player plays against ev
    5·1 answer
  • The revenue equation​ (in hunderds of millions of​ dollars) for barley production in a certain country is approximated by (pleas
    9·1 answer
  • Gavin wrote the equation p= 3(s+100)/4 to represent p, the profit he makes from s sales in his lawn-mowing business. Which equat
    8·2 answers
  • How would I answer c and d?
    15·1 answer
  • Which decimal is equivalent to 4.2733333?
    12·2 answers
  • True or false: 4[6 2(6 4)]&lt;20
    15·1 answer
  • You ate five slices of bread. Your friend eats two slices fewer than you. Write an expression that describes the number of slice
    15·2 answers
  • Write the standard equation of the circle with the given center that passes through the given point
    11·1 answer
  • X+6=8 what is X?<br> 2X + 2 =4 what is X?
    12·1 answer
  • Find the measure of angle A.<br> A<br> 9x+6<br> 4x + 6<br> m/A=
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!