Answer:
-12162.47 joules (or -12000 joules when accounting for significant figures)
Explanation (btw I used 1 cal as 4.184 joules because SI units are better):
q = m c delta T
q = (70.9) (4.184) (25 - 66)
q = (70.9) (4.184) (-41)
q = -12162.47 joules
The mass of ore required is
21 700 t.
r = 750 cm
V =

=

= 1.767 × 10⁹ cm³
The density of lead is 11.34 g/cm³.
So mass of lead sphere = 1.767 × 10⁹ cm³ ×

= 2.004 ×10¹⁰ g
2.004 ×10¹⁰ g ×

= 2.004 × 10⁷ kg
2.004 × 10⁷ kg ×

= 2.004 × 10⁴ t
92.5% efficiency means 92.5 t Pb per 100 t of ore.
Mass of ore = 2.004 × 10⁴ t Pb ×

= 2.17 × 10⁴ t ore = 21 700 t ore
The efficiency of any machine is given by:
efficiency = output obtained / input given
Substituting the values,
Efficiency = 105 / 150
Efficiency = 0.7
Converting this to a percentage, the efficiency of the hammer is 70%.
This is a fairly high efficiency, and this is due to the fact that the hammer is a simpler machine. The more complex a machine is, the greater are the losses in it due to friction, meaning there is a lower efficiency.
Earth is the right distance from the sun. It’s protected from harmful solar radiation by its magnetic field and the atmosphere keeps it warm. Earth contains the right chemical ingredients to sustain life such as H2O (water) and C (carbon)