Answer:
Explanation:
To calculate the cell potential we use the relation:
Eº cell = Eº oxidation + Eº reduction
Now in order to determine which of the species is going to be oxidized, we have to remember that the more the value of the reduction potential is negative, the greater its tendency to be oxidized is. In electrochemistry we use the values of the reductions potential in the tables for simplicity because the only thing we need to do is change the sign of the reduction potential for the oxized species .
So the species that is going to be oxidized is the Aluminium, and therefore:
Eº cell = -( -1.66 V ) + 0.340 V = 5.06 V
Equally valid is to write the equation as:
Eº cell = Eº reduction for the reduced species - Eº reduction for the oxidized species
These two expressions are equivalent, choose the one you fell more comfortable but be careful with the signs.
The frequency of the radiation is equal to
Hertz.
<u>Given the following data:</u>
- Photon energy =
Joules
To find the frequency of this radiation, we would use the Planck-Einstein equation.
Mathematically, the Planck-Einstein relation is given by the formula:

<u>Where:</u>
Substituting the given parameters into the formula, we have;

Frequency, F =
Hertz
Read more: brainly.com/question/16901506
Answer:
V2 = 35.967cm^3
Explanation:
Given data:
P1 = 0.2atm
P2 = 1.4atm
V1 = 250cm^3
V2 = ?
T1 = 10°C + 273 = 283K
T2 = 12°C + 273 = 285K
Apply combined law:
P1xV1/T1 = P2xV2/T2 ...eq1
Substituting values:
0.2 x 250/283 = 1.4 x V2/285
Solve for V2:
V2 = 14250/396.2
V2 = 35.967cm^3
Answer:
Explanation:
1. Weight = 35 P and 45 N = 80
2. Atom: 35P = 35 electrons
3. Bromine
4. It's a non metal. It's in column 17. It will gain 1 electron (normally).
5. Ion: 35 protons, 36 electrons
6. Charge: - 1 usually, but there are exceptions
7. Anions go to the Anode. The anode attracts minus charged elements.
8. In an uncharged state, element 36 would be next. That would be Krypton which is always uncharged. It is a noble gas.
B
step-by-step explanation