Answer:
c the factor of the inequality is correct - took this test already
Step-by-step explanation:
I think the answer is c sorry if I’m wrong
Answer:
![360xy^2|xz^3|](https://tex.z-dn.net/?f=360xy%5E2%7Cxz%5E3%7C)
Step-by-step explanation:
Given expression:
![12x \sqrt{900x^2y^4z^6}](https://tex.z-dn.net/?f=12x%20%5Csqrt%7B900x%5E2y%5E4z%5E6%7D)
![\textsf{Apply radical rule} \quad \sqrt{ab}=\sqrt{a}\sqrt{b}:](https://tex.z-dn.net/?f=%5Ctextsf%7BApply%20radical%20rule%7D%20%5Cquad%20%5Csqrt%7Bab%7D%3D%5Csqrt%7Ba%7D%5Csqrt%7Bb%7D%3A)
![\implies 12x \sqrt{900}\sqrt{x^2}\sqrt{y^4}\sqrt{z^6}](https://tex.z-dn.net/?f=%5Cimplies%2012x%20%5Csqrt%7B900%7D%5Csqrt%7Bx%5E2%7D%5Csqrt%7By%5E4%7D%5Csqrt%7Bz%5E6%7D)
Replace 900 with 30² :
![\implies 12x \sqrt{30^2}\sqrt{x^2}\sqrt{y^4}\sqrt{z^6}](https://tex.z-dn.net/?f=%5Cimplies%2012x%20%5Csqrt%7B30%5E2%7D%5Csqrt%7Bx%5E2%7D%5Csqrt%7By%5E4%7D%5Csqrt%7Bz%5E6%7D)
![\textsf{Apply radical rule} \quad \sqrt{a^2}=a, \quad a \geq 0:](https://tex.z-dn.net/?f=%5Ctextsf%7BApply%20radical%20rule%7D%20%5Cquad%20%5Csqrt%7Ba%5E2%7D%3Da%2C%20%5Cquad%20a%20%5Cgeq%200%3A)
![\implies 12x \cdot 30|x|\sqrt{y^4}\sqrt{z^6}](https://tex.z-dn.net/?f=%5Cimplies%2012x%20%5Ccdot%2030%7Cx%7C%5Csqrt%7By%5E4%7D%5Csqrt%7Bz%5E6%7D)
![\implies 360x|x|\sqrt{y^4}\sqrt{z^6}](https://tex.z-dn.net/?f=%5Cimplies%20360x%7Cx%7C%5Csqrt%7By%5E4%7D%5Csqrt%7Bz%5E6%7D)
(We need to use the absolute value of √x² since the x term was originally to the power of 2, which means the value of x² is always positive since the exponent is even).
![\textsf{Apply exponent rule} \quad \sqrt{a^m}=a^{\frac{m}{2}}:](https://tex.z-dn.net/?f=%5Ctextsf%7BApply%20exponent%20rule%7D%20%5Cquad%20%5Csqrt%7Ba%5Em%7D%3Da%5E%7B%5Cfrac%7Bm%7D%7B2%7D%7D%3A)
![\implies 360x|x|\cdot y^{\frac{4}{2}}\cdot z^{\frac{6}{2}}](https://tex.z-dn.net/?f=%5Cimplies%20360x%7Cx%7C%5Ccdot%20y%5E%7B%5Cfrac%7B4%7D%7B2%7D%7D%5Ccdot%20z%5E%7B%5Cfrac%7B6%7D%7B2%7D%7D)
Simplify:
![\implies 360xy^2|xz^3|](https://tex.z-dn.net/?f=%5Cimplies%20360xy%5E2%7Cxz%5E3%7C)
(We need to use the absolute value of z³ since the z term was original to the power of 6, which means the value of z⁶ is always positive since the exponent is even).
Answer:
45
Step-by-step explanation:
5(4(2)+ 1²)
5(8 + 1²)
40 + 5
45