1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
myrzilka [38]
2 years ago
5

The graph below shows the position of an ant as it crawls over a flat picnic blanket. The total time for the ant to go from the

start to the end position takes 1 minute and 45 seconds.
What is the average speed and average velocity of the ant?

A.) Average speed is 0.200 cm/s and average velocity is 0.0988 cm/s to the upper right.
B.) Average speed is 0.152 cm/s and average velocity is 0.910 cm/s to the upper right.
C.) Average speed is 0.975 cm/s and average velocity is 1.95 cm/s to the upper right.
D.) Average speed is 0.276 cm/s and average velocity is 0.136 cm/s to the upper right.

Physics
1 answer:
Mice21 [21]2 years ago
5 0

The average speed of the ant is 0.276 cm/s and the average velocity is 0.136 cm/s.

The correct answer is option D.

In the given graph, we can deduce the following;

  • the total time of the motion, = 1 mins + 45 s = 60 s + 45 s = 105 s

The average speed of the ant is calculated as;

average \ speed = \frac{total \ distance }{total \ time }

The total distance from the graph is calculated as follows;

  • first horizontal distance from 2 cm to 8 cm = 8 - 2 = 6 cm
  • first upward distance from 3 cm to 5 cm = 5 - 3 = 2 cm
  • second horizontal distance from 8 cm to 6 cm = 8 - 6 = 2 cm
  • second upward distance from 5 cm to 12 cm = 12 - 5 = 7 cm
  • third horizontal distance from 6 cm to 13 cm = 13 - 6 = 7 cm
  • fourth downward distance from 12 cm to 9 cm = 3 cm
  • final horizontal distance from 13 cm to 15 cm = 2cm

The total distance = (6 + 2 + 2 + 7 + 7 + 3 + 2) cm = 29 cm

average \ speed = \frac{total \ distance }{total \ time } = \frac{29 \ cm}{105 \ s} = 0.276 \ cm/s

The average velocity is calculated as the change in displacement per change in time.

The displacement is the shortest distance between the start and end positions.

  • This shortest distance is the straight line connecting the start and end position. Call this line P
  • From the end position at x = 15 cm, draw a vertical line from y = 9 cm, to y = 3 cm. The displacement = 9 cm - 3 cm = 6 cm
  • Also, draw a horizontal line from start at x = 2 cm to x = 15 cm. The displacement = 15 cm - 2 cm = 13 cm

Notice, you have a right triangle, now calculate the length of  line P.

                                                ↓end

                                                ↓

                                                ↓ 6cm

                                                ↓

  start -------------13 cm------------

Use Pythagoras theorem to solve for P.

P^2 = 6^2 + 13^2\\\\P^2 = 36 + 169\\\\P^2 = 205\\\\P= \sqrt{205} \\\\P = 14.318 \ cm

The average velocity of the ant is calculated as;

average \ velocity= \frac{\Delta displacemnt  }{total\ time }= \frac{14.318 \ cm}{105 \  s} = 0.136 \ cm/s  \\\\

Thus, the average speed of the ant is 0.276 cm/s and the average velocity is 0.136 cm/s.

Learn more here: brainly.com/question/589950

You might be interested in
How far did the object travel by the end of eight seconds, according to the graph above?
Ulleksa [173]

Answer:

<em>The object traveled 4 cm by the end of eight seconds.</em> Correct: A)

Explanation:

<u>Speed vs Time Graph</u>

In a speed-time graph, speed is plotted on the vertical axis and time is plotted on the horizontal axis. If the graph is a horizontal line, the speed is constant, if the line is sloped up, the speed is increasing and the acceleration is positive and constant, and if the line is sloped down, the speed is decreasing and the acceleration is negative and constant.

The distance traveled by the object can be found by calculating the area under the graph and above the x-axis.

The graph provided shows two different zones: the first 4 seconds, the speed is constant at 1 cm/s, and the last 4 seconds, the speed is zero, i.e. the object is not moving.

The area behind the first zone is a rectangle of height 1 cm/s and base 4 sec, thus the distance is 1 * 4 = 4 centimeters.

The second zone corresponds to an object at rest, thus no distance is traveled.

The object traveled 4 cm by the end of eight seconds.

A) Correct. As shown above

B) The distance traveled is 4 cm. Incorrect

C) The distance traveled is 4 cm. Incorrect

D) The distance traveled is 4 cm. Incorrect

6 0
3 years ago
A 400-n block is dragged along a horizontal surface by an applied force as shown. the coefficient of kinetic friction is uk = 0.
gulaghasi [49]
The block moves with constant velocity: for Newton's second law, this means that the resultant of the forces acting on the block is zero, because the acceleration is zero.

We are only concerned about the horizontal direction, and there are only two forces acting along this direction: the force F pushing the block and the frictional force F_f acting against the motion. Since their resultant must be zero, we have:
F-F_f = 0
The frictional force is
F_f = \mu mg
where
\mu=0.4 is the coefficient of kinetic friction
mg=400 N is the weight of the block. 

Substituting these values, we find the magnitude of the force F:
F=F_f = \mu mg=(0.4 )(400 N)=160 N
4 0
3 years ago
A falling object accelerates from -10.0 m/s to -30.0 m/s. how much time does it take?
Zepler [3.9K]

Answer:

2.04 s

Explanation:

v = at + v₀

(-30.0 m/s) = (-9.8 m/s²) t + (-10.0 m/s)

t = 2.04 s

8 0
3 years ago
Read 2 more answers
A fireworks rocket is fired vertically upward. At its maximum height of 90.0 m , it explodes and breaks into two pieces, one wit
Alex73 [517]

Answer:

Ai. Speed of the fragment with mass mA= 1.35 kg is 34.64 m/s

Aii. Speed of the fragment with mass mB = 0.270 kg is 77.46 m/s

B. 475.3 m

Explanation:

A. Determination of the speed of each fragment.

I. Determination of the speed of the fragment with mass mA = 1.35 kg

Mass of fragment (m₁) = 1.35 kg

Kinetic energy (KE) = 810 J

Velocity of fragment (u₁) =?

KE = ½m₁u₁²

810 = ½ × 1.35 × u₁²

810 = 0.675 × u₁²

Divide both side by 0.675

u₁² = 810 / 0.675

u₁² = 1200

Take the square root of both side.

u₁ = √1200

u₁ = 34.64 m/s

Therefore, the speed of the fragment with mass mA = 1.35 kg is 34.64 m/s

II. I. Determination of the speed of the fragment with mass mB = 0.270 kg

Mass of fragment (m₂) = 0.270 kg

Kinetic energy (KE) = 810 J

Velocity of fragment (u₂) =?

KE = ½m₂u₂²

810 = ½ × 0.270 × u₂²

810 = 0.135 × u₂²

Divide both side by 0.135

u₂² = 810 / 0.135

u₂² = 6000

Take the square root of both side.

u₂ = √6000

u₂ = 77.46 m/s

Therefore, the speed of the fragment with mass mB = 0.270 kg is 77.46 m/s

B. Determination of the distance between the points on the ground where they land.

We'll begin by calculating the time taken for the fragments to get to the ground. This can be obtained as follow:

Maximum height (h) = 90.0 m

Acceleration due to gravity (g) = 10 m/s²

Time (t) =?

h = ½gt²

90 = ½ × 10 × t²

90 = 5 × t²

Divide both side by 5

t² = 90/5

t² = 18

Take the square root of both side

t = √18

t = 4.24 s

Thus, it will take 4.24 s for each fragments to get to the ground.

Next, we shall determine the horizontal distance travelled by the fragment with mass mA = 1.35 kg. This is illustrated below:

Velocity of fragment (u₁) = 34.64 m/s

Time (t) = 4.24 s

Horizontal distance travelled by the fragment (s₁) =?

s₁ = u₁t

s₁ = 34.64 × 4.24

s₁ = 146.87 m

Next, we shall determine the horizontal distance travelled by the fragment with mass mB = 0.270 kg. This is illustrated below:

Velocity of fragment (u₂) = 77.46 m/s

Time (t) = 4.24 s

Horizontal distance travelled by the fragment (s₂) =?

s₂ = u₂t

s₂ = 77.46 × 4.24

s₂ = 328.43 m

Finally, we shall determine the distance between the points on the ground where they land.

Horizontal distance travelled by the 1st fragment (s₁) = 146.87 m

Horizontal distance travelled by the 2nd fragment (s₂) = 328.43 m

Distance apart (S) =?

S = s₁ + s₂

S = 146.87 + 328.43

S = 475.3 m

Therefore, the distance between the points on the ground where they land is 475.3 m

3 0
3 years ago
In a physics lab, a 0.500-kg cart (Cart A) moving with a speed of 129 cm/s encounters a magnetic collision with a 1.50-kg cart (
omeli [17]

Answer:

58 cm/s

Explanation:

0.5×129=0.5×(-45)+1.5×V

V=58

7 0
2 years ago
Other questions:
  • A runner with a mass of 80kg accelerates from 0 to 9 m/s in 3 s find the net force
    8·1 answer
  • State Newton’s third law of motion.
    8·1 answer
  • A particle hangs from a spring and oscillates with a period of 0.2s.If the mass-spring system remained at rest, by how much woul
    13·2 answers
  • Ocean waves are traveling to the east at 3.2 m/s with a distance of 19 m between crests. (a) With what frequency do the waves hi
    11·1 answer
  • Which of the following is a legal requirement for boat operation?
    13·1 answer
  • A positively charged object will attract an object that has
    13·1 answer
  • If the moon disapared what affect would this have on earths tides
    5·1 answer
  • HELP ASAP-WILL GIVE BRAINLIEST-NO FILES
    15·1 answer
  • What are the conditions under which the resultant of three coplanar forces is zero?<br>​
    11·1 answer
  • The Mandalorian tells baby Yoda (Grogu) to put on his seatbelt in his ship the Razor Crest. Explain why is it a good idea to hav
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!