Another way to test your question is to build your own miniature buildings. Depending on how in-depth you go, building could get a little pricey, but if you keep it basic there shouldn't be a problem. Decide on a certain number of foundations to test [maybe 3 or so] and try simulating an earthquake.
<span>Hope this helps! </span>
The time after being ejected is the boulder moving at a speed 20.7 m/s upward is 2.0204 s.
<h3>What is the time after being ejected is the boulder moving at a speed 20.7 m/s upward?</h3>
The motion of the boulder is a uniformly accelerated motion, with constant acceleration
a = g = -9.8 
downward (acceleration due to gravity).
By using Suvat equation:
v = u + at
where: v is the velocity at time t
u = 40.0 m/s is the initial velocity
a = g = -9.8
is the acceleration
To find the time t at which the velocity is v = 20.7 m/s
Therefore,

The time after being ejected is the boulder moving at a speed 20.7 m/s upward is 2.0204 s.
The complete question is:
A large boulder is ejected vertically upward from a volcano with an initial speed of 40.0 m/s. Ignore air resistance. At what time after being ejected is the boulder moving at 20.7 m/s upward?
To learn more about uniformly accelerated motion refer to:
brainly.com/question/14669575
#SPJ4
Answer:
equilibrium position.
Explanation:
In simple harmonic motion , velocity v(t) is given by,
v(t) = -ω A sin(ωt + φ)
where
ω = angular velocity of the corresponding circular motion
A = amplitude
t = time
φ = the initial angle of the corresponding circular motion when the motion begin.
v (t) get maximized when sin value is maximized , i.e. sin
=1
The particle has maximum speed when it passes through the equilibrium position.
<span>Antimony I am pretty sure is one. </span>
Hello,
Average speed is total distance divided by total time. From the problem, our total distance is given as 500 kilometers and given time is 5 hours. Therefore, the average speed is:

Therefore, the average speed is 100 km/h. Please let me know if you have any questions!