1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastovalidia [21]
2 years ago
14

Please help me i em doing a test

Physics
2 answers:
Aleks [24]2 years ago
8 0

Answer:

Student 2 protons and valence electrons

timofeeve [1]2 years ago
6 0

1 is the answer of above question.

You might be interested in
What happens when exhale
polet [3.4K]
When you breathe in, or inhale, your diaphragm contracts (tightens) and moves downward. This increases the space in your chest cavity, into which your lungs expand. The intercostal muscles between your ribs also help enlarge the chest cavity. They contract to pull your rib cage both upward and outward when you inhale.
4 0
3 years ago
Read 2 more answers
A 3.35 kg object initially moving in the positive x direction with a velocity of 4.90 m s collides with and sticks to a 1.88 kg
ahrayia [7]

Answer:

The final components of velocity of the composite object is 3.33 m/s.

Explanation:

Given;

mass of the first object, m₁ = 3.35 kg

initial velocity of the first object, u₁ = 4.90 m/s in positive x-direction

mass of the second object, m₂ = 1.88 kg

initial velocity of the second object, u₂ = 3.12 m/s in negative y-direction

initial momentum of the first object, P₁ = 3.35 x 4.9 = 16.415 kgm/s

initial momentum of the second object, P₂ = 1.88 x 3.12 = 5.8656 kgm/s

The resultant velocity of the two objects is given by;

R² = 16.415² + 5.8656²

R² = 303.858

R = √303.858

R = 17.432 kgm/s

Apply the principle of conservation of linear momentum for inelastic collision;

total initial momentum before = total final momentum after collision

P₁(x) + P₂(y) = Pf

R = Pf

R = v(m₁ + m₂)

17.432 = v(m₁ + m₂)

where;

v is the final components of velocity of the composite object

v = \frac{17.432}{m_1 + m_2} \\\\v = \frac{17.432}{3.35+1.88} \\\\v = 3.33 \ m/s

Therefore, the final components of velocity of the composite object is 3.33 m/s.

8 0
2 years ago
Two sound waves (speed 343 m/s) have different wavelengths. The first has a wavelength of 5.72 m, and the second a wavelength of
lys-0071 [83]

Answer:

The beat frequency is 30 Hz

Explanation:

Given;

velocity of the two sound waves, v = 343 m/s

wavelength of the first wave, λ₁ = 5.72 m

wavelength of the second wave, λ₂ = 11.44 m

The frequency of the first wave is calculated as follows;

F₁ = v/λ₁

F₁ = 343 / 5.72

F₁ = 59.97 HZ

The frequency of the second wave is calculated as follows;

F₂ = v/λ₂

F₂ = 343 / 11.44

F₂ = 29.98 Hz

The beat frequency is calculated as;

Fb = F₁ - F₂

Fb =  59.97 HZ - 29.98 Hz

Fb = 30 Hz

6 0
3 years ago
2. When the pump removed the air in<br> the bell, the balloon<br> contracted<br> expanded
IRINA_888 [86]

When the pump removed the air in  the bell, the balloon expanded.

<u>Option: B</u>

<u>Explanation:</u>

In order to construct our own environment in the glass jar known as bell jar system, which can be used to explore and consider our larger environment on Earths, for an instance. Here a glass jar that hinges on an airtight rubber basis i.e seals appropriately. At the top of the jar, a bung is connected to it which passed via a metal tube. It has an adjacent flexible tube that goes to a hand vacuum pump and the best hand-powered pump was made with a wine preserver.

When the pump extracts the air from the bell jar, the pressure inside the balloon naturally decreases. The balloon usually has a air pressure around it, which restricts its size, but when this air is extracted and the pressure around it decreases the gas in the balloon will expand and the balloon seems to be inflating. When you release the air back into the bell jar, it will once again compress back to its actual size.

8 0
3 years ago
States that there is an exchange of materials when two objects come into contact with each other
pishuonlain [190]

"Edmond Locard" states that there is an exchange of materials when two objects come into contact with each other.

<u>Explanation:</u>

A French criminologist who was popular as the "Sherlock Holmes of France," the pioneer in forensic science named as Dr. Edmond Locard. He articulated forensic science's fundamental principle "Each touch leaves a trace." This became known as Locard's philosophy of exchange. A Locard hypothesized that each and every time you touch another person, place or object, the result would be an exchange of materials. Burglars, for instance, will leave evidence of their existence behind and take traces with them too.

3 0
2 years ago
Other questions:
  • The forces acting on a falling leaf are.
    6·1 answer
  • What body in the solar system do you think is one focus of the moons orbit
    13·2 answers
  • A frequently quoted rule of thumb in aircraft design is that wings should produce about 1000 n of lift per square meter of wing.
    8·1 answer
  • HELP ASAP
    7·2 answers
  • What should a person do to reduce the risk of developing osteoporosis if it runs in the family?
    8·1 answer
  • When air expands adiabatically (without gaining or losing heat), its pressure P and volume V are related by the equation PV1.4=C
    13·2 answers
  • What is the wavelength of light falling on double slits separated by 2.00 μm if the third-order maximum is at an angle of 60.0∘?
    15·1 answer
  • In the attachment there is a density column where there is colour
    10·2 answers
  • Changr 20 min in to hr​
    5·1 answer
  • Which of the following statements is true about transverse waves?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!