Question
Rutherford tracked the motion of tiny, positively charged particles shot through a thin sheet of gold foil. Some particles travelled in a straight line and some were deflected at different angles.
Which statement best describes what Rutherford concluded from the motion of the particles?
A) Some particles travelled through empty spaces between atoms and some particles were deflected by electrons.
B) Some particles travelled through empty parts of the atom and some particles were deflected by electrons.
C) Some particles travelled through empty spaces between atoms and some particles were deflected by small areas of high-density positive charge in atoms.
D) Some particles travelled through empty parts of the atom and some particles were deflected by small areas of high-density positive charge in atoms.
Answer:
The right answer is C)
Explanation:
In the experiment described above, a piece of gold foil was hit with alpha particles, which have a positive charge. Alpha particles <em>α</em> were used because, if the nucleus was positive, then it would deflect the positive particles. The principles of physics posit that electric charges of the same orientation repel.
So most as expected some of the alpha particles went right through meaning that the gold atoms comprised mostly empty space except the areas that were with a dense population of positive charges. This area became known as the "nucleus".
Due to the presence of the positive charges in the nucleus, some particles had their paths bent at large angles others were deflected backwards.
Cheers!
From our studies of the work of Professor Newton,
we have learned that
F = M a .
That is, the product of an object's mass and its acceleration
is equal to the net force acting on it.
An object in equilibrium is an object that has no acceleration.
In other words, it may be moving in a straight line at a speed
that does not change, or it may be just lying there before us.
In either case, since the object has no acceleration, we glance
at Newton's formula, and we instantly realize that the net force
on the object must be ZERO.
The object behaves just as if there were NO forces acting on it at all.
The correct answer to the question is - Deposition i.e the process by which a gas changes to a solid is called deposition.
EXPLANATION:
There are various thermal processes of state or phase change in which matter in one state is converted into matter in another state.
Deposition is the type of thermodynamic process of state or phase change in which a gaseous substance is directly converted into corresponding solid substance without entering into liquid phase.
During this process, the loss of thermal energy from gas is very fast. Hence, the gas directly enters solid phase without undergoing into liquid phase.
This process is just the opposite process of sublimation where a solid is converted into gas directly. That's why this process is also known as desublimation.
For instance, conversion of water vapor into ice.