The amount of energy lost at the transition between each trophic level of the pyramid of energy is about 90%.
There are a total of 4 trophic levels.
The producers which bare plants represent the first trophic level. Herbivores represent the second trophic level. Carnivores represent the third trophic level. Top carnivores represent the fourth trophic level.
The 10 % rule is followed by the energy flow in a food chain. It means that moving from one trophic level to another, only 10% of energy is transferred and the rest is lost in the atmosphere.
So the 90% percent energy is lost at the transition between each trophic level of the pyramid of energy.
If you need to learn more about the trophic levels, click here
brainly.com/question/13267084
#SPJ4
Answer:
Explanation:
T = 2π√(L/g)
If you increase L to 2L, the period is increased by a factor of √2
T = 3.5√2 ≈ 4.9 s
Answer:
1.
Jupiter is the largest planet in the solar system. (Image credit: NASA)
The largest planet in the solar system, the gas giant Jupiter is approximately 318 times as massive as Earth. If the mass of all of the other planets in the solar system were combined into one "super planet," Jupiter would still be two and a half times as large.
2.Rotation of Jupiter
[/caption]
Jupiter has the fastest rotation of all the planets in the Solar System, completing one rotation on its axis every 9.9 hours.
3.Jupiter, the King of the Planets, is a gas giant, which means that it's made mostly of gases like hydrogen and helium, and that it doesn't have a solid surface in the way that rocky planets like Earth do. With a temperature of 130 K (-140 C, -230 F), it's so cold that it gives off most of its energy in the infrared. In fact, Jupiter gives off almost twice as much heat as it receives from the Sun. It's able to do this because it has its own internal heat source, powered by the slow gravitational collapse that started when the planet first formed. Astronomers estimate that Jupiter is currently shrinking by almost 2 cm per year
If she walks 132 and 6 you do 132 x 6 = 792
Answer:
17 °C
Explanation:
From specific Heat capacity.
Q = cm(t₂-t₁)................. Equation 1
Where Q = Heat absorb by the metal block, c = specific heat capacity of the metal block, m = mass of the metal block, t₂ = final temperature, t₁ = Initial temperature.
make t₁ the subject of the equation
t₁ = t₂-(Q/cm)............... Equation 2
Given: t₂ = 22 °C, Q = 5000 J, m = 4 kg, c = 250 J/kg.°c
Substitute into equation 2
t₁ = 22-[5000/(4×250)
t₁ = 22-(5000/1000)
t₁ = 22-5
t₁ = 17 °C