<span>373.2 km
The formula for velocity at any point within an orbit is
v = sqrt(mu(2/r - 1/a))
where
v = velocity
mu = standard gravitational parameter (GM)
r = radius satellite currently at
a = semi-major axis
Since the orbit is assumed to be circular, the equation is simplified to
v = sqrt(mu/r)
The value of mu for earth is
3.986004419 Ă— 10^14 m^3/s^2
Now we need to figure out how many seconds one orbit of the space station takes. So
86400 / 15.65 = 5520.767 seconds
And the distance the space station travels is 2 pi r, and since velocity is distance divided by time, we get the following as the station's velocity
2 pi r / 5520.767
Finally, combining all that gets us the following equality
v = 2 pi r / 5520.767
v = sqrt(mu/r)
mu = 3.986004419 Ă— 10^14 m^3/s^2
2 pi r / 5520.767 s = sqrt(3.986004419 * 10^14 m^3/s^2 / r)
Square both sides
1.29527 * 10^-6 r^2 s^2 = 3.986004419 * 10^14 m^3/s^2 / r
Multiply both sides by r
1.29527 * 10^-6 r^3 s^2 = 3.986004419 * 10^14 m^3/s^2
Divide both sides by 1.29527 * 10^-6 s^2
r^3 = 3.0773498781296 * 10^20 m^3
Take the cube root of both sides
r = 6751375.945 m
Since we actually want how far from the surface of the earth the space station is, we now subtract the radius of the earth from the radius of the orbit. For this problem, I'll be using the equatorial radius. So
6751375.945 m - 6378137.0 m = 373238.945 m
Converting to kilometers and rounding to 4 significant figures gives
373.2 km</span>
Answer:
I think its A plz tell me if im right
Answer:
40 cm
Explanation:
We are given that
Load=800 N
Effort=200 N
Load distance=10 cm
We have to find the effort distance.
We know that

Using the formula

Effort distance=
Effort distance=
Effort distance=40 cm
Hence, the effort distance will be 40 cm.
Speed and direction are the two scientific componets that make up velocity.