In physical science applying a force over a displacement is called work.
The full question can be seen below:

The decomposition of
is represented by the equation above.
A student monitored the decomposition of a 1.0 L sample of
at a constant temperature of 300K and recorded the concentration of
as function of time. The results are given in the table below:
Time (s) 
0 2.7
200 2.1
400 1.7
600 1.4
The
produced from the decomposition of the 1.0 L sample of
is collected in a previously evacuated 10.0 L flask at 300 K. What is the approximate pressure in the flask after 400 s?
(For estimation purpose, assume that 1.0 mole of gas in 1.0 L exerts a pressure of 24 atm at 300 K).
Answer:
1.2 atm
Explanation:
Considering all assumptions as stated above;

Initial 2.7 mole --- ---
Change -1.0 --- 
Equilibrium 1.7 mole --- 0.5 mole
To determine the concentration of O₂; we need to convert the moles to concentration for O₂ = 
= 
= 0.05 
Thus, based on the assumption that "1.0 mole of gas in 1.0 L exerts a pressure of 24 atm"
∴ 0.05
will give rise to = 0.05
× 24
= 1.2 atm
An atom of sodium has 11 protons
Answer:
The energy released in the decay process = 18.63 keV
Explanation:
To solve this question, we have to calculate the binding energy of each isotope and then take the difference.
The mass of Tritium = 3.016049 amu.
So,the binding energy of Tritium = 3.016049 *931.494 MeV
= 2809.43155 MeV.
The mass of Helium 3 = 3.016029 amu.
So, the binding energy of Helium 3 = 3.016029 * 931.494 MeV
= 2809.41292 MeV.
The difference between the binding energy of Tritium and the binding energy of Helium is: 32809.43155 - 2809.412 = 0.01863 MeV
1 MeV = 1000keV.
Thus, 0.01863 MeV = 0.01863*1000keV = 18.63 keV.
So, the energy released in the decay process = 18.63 keV.