The function given is a composite function. Let's work from the outside in:

First step:
![\frac{d}{dx}[y]= \frac{d}{dx}[ln(sinh(2x))]](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5By%5D%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bln%28sinh%282x%29%29%5D)
Now, let's work it out:
![\frac{dy}{dx} = \frac{1}{sinh(2x) } * \frac{d}{dx}[sinh(2x)]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B1%7D%7Bsinh%282x%29%20%7D%20%2A%20%20%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bsinh%282x%29%5D)
Next step:
![\frac{dy}{dx} = \frac{1}{sinh(2x) } * cosh(2x) * \frac{d}{dx}[2x]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B1%7D%7Bsinh%282x%29%20%7D%20%2A%20cosh%282x%29%20%2A%20%20%5Cfrac%7Bd%7D%7Bdx%7D%5B2x%5D%20)
Next step:

Simplify:

Simplify further:

Remember that:

So,
your final answer is:
So, your answer is
C. Hope I could help you!
Graph the absolute value by using the vertex and a few selected points
Point One: X= -1, Y= -8
Point Two: X= 0, Y= -2
Point Three: X= 1, Y= 4
Point Four: X= 2, Y= -2
Point Five: X= 3, Y= -8
The graph should look something like a mountain or an upside down V
Answer:
hope this will help you more
Answer:
-2,1
Step-by-step explanation: