Answer:
Find the sum of the series
∑(4x−5)
such that
1≤x≤7
.
answer is 77
Step-by-step explanation:
Answer:
x value of vertical asymptote and y value of horizontal asymptote
Step-by-step explanation:
The graph of 1/x approaches infinity as x approaches 0 (the vertical asymptote)
As x gets either bigger or smaller, 1/x approaches the x-axis (from above on the positive side, from below on the negative side) (the horizontal asymptote)
Consider 1/(x-5) + 2, at what value of x does the graph 'go nuts' ?
When the bottom of the fraction becomes 0, x - 5 becomes 0 when x = 5, so the vertical asymptote of g(x) is at x=5
What value of y does f(x) approach as x gets more positive or more negative - as x gets bigger (as an example), y approaches 0
What y value does g(x) approach as x gets bigger? Well, as x gets big, 1/(x-5) gets small, approaching 0. The smallest 0 + 2 can get is 2, so y=2 is the horizontal asymptote
For a question like this, all you have to do is remember that a percentage is simply a fraction expressed as a decimal. So, all we have to do is:

, and then multiply our decimal answer by 100 to get the percentage:

= 0.34
0.34 x 100 = 34
Therefore 34% of the students walk to school.
I hope this helped and remember to please try and understand the maths that got the answer, not just writing the answer down :))
Answer:
The prices at which manager predict that at least 55 hats will be sold would be would be of $38
Step-by-step explanation:
According to the given data we the following:
Number of hats sold at $18=115
The manager predicts at 3 less will sold for every rise in 1 $ for at least 55 hats.
Therefore, reduction in number=115 hats-55 hats=60
So, increase in price=reduction in number/number of hats manager predicts that will be sold for every $1 increase in price
increase in price=60/3=$20
Therefore, prices at which manager predict that at least 55 hats will be sold would be=$18+$20=$38
The prices at which manager predict that at least 55 hats will be sold would be would be of $38