Answer:
r = -0.0056 --> 5.6%
Step-by-step explanation:
If you mean in decimal form then it would be 15.65
Answer:
Step-by-step explanation:
First confirm that x = 1 is one of the zeros.
f(1) = 2(1)^3 - 14(1)^2 + 38(1) - 26
f(1) = 2 - 14 + 38 - 26
f(1) = -12 + 38 = + 26
f(1) = 26 - 26
f(1) = 0
=========================
next perform a long division
x -1 || 2x^3 - 14x^2 + 38x - 26 || 2x^2 - 12x + 26
2x^3 - 2x^2
===========
-12x^2 + 28x
-12x^2 +12x
==========
26x -26
26x - 26
========
0
Now you can factor 2x^2 - 12x + 26
2(x^2 - 6x + 13)
The discriminate of the quadratic is negative. (36 - 4*1*13) = - 16
So you are going to get a complex result.
x = -(-6) +/- sqrt(-16)
=============
2
x = 3 +/- 2i
f(x) = 2*(x - 1)*(x - 3 + 2i)*(x - 3 - 2i)
The zeros are
1
3 +/- 2i
x + 2y + 3 = 0
Subtract x from both sides.
2y + 3 = -x
Subtract 3 from both sides.
2y = -x - 3
Divide by 2 on both sides
y = -(x+3)/2
x + y + 4 = 0
Subtract x and 4 from both sides
y = -x - 4
3x - 2y + 4 = 0
Subtract 3x and 4 from both sides.
-2y = -3x -4
Divide by -2 from both sides.
y = -(3x + 4) / 2
The answer is the graph that contains these slopes and lines on the graph, which was not provided.
Answer:
x = -8 and x = 4
Step-by-step explanation:
given
f(x) = (x+8) (x - 4)
recall that at any point on the x-axis, y = 0 [i.e f(x) = 0]
hence to find where the graph crosses the x-axis, we simply substitue f(x) = 0 into the equation and solve for x
f(x) = (x+8) (x - 4)
0 = (x+8) (x - 4)
Hence
either,
(x+8) = 0 ----> x = -8 (first crossing point)
or
(x-4) = 0 ------> x = 4 (second crossing point)
Hence the graph crosses the x-axis at x = -8 and x = 4