Answer:
The angle between the magnetic field and the wire’s velocity is 19.08 degrees.
Explanation:
Given that,
Potential difference, V = 53 mV
Length of the wire, l = 12 cm = 0.12 m
Magnetic field, B = 0.27 T
Speed of the wire, v = 5 m/s
Due to its motion, an emf is induced in the wire. It is given by :

Here,
is the angle between magnetic field and the wire’s velocity

So, the angle between the magnetic field and the wire’s velocity is 19.08 degrees.

λ - wavelength, c - the speed of light, f - frequency
![f=200 \ kHz= 200 000 \ Hz \\ \\ \lambda=\frac{300 000 \ [\frac{km}{s}]}{200 000 \ [Hz]}=\frac{3}{2}=1.5 \ [km]](https://tex.z-dn.net/?f=f%3D200%20%5C%20kHz%3D%20200%20000%20%5C%20Hz%20%5C%5C%20%5C%5C%0A%5Clambda%3D%5Cfrac%7B300%20000%20%5C%20%5B%5Cfrac%7Bkm%7D%7Bs%7D%5D%7D%7B200%20000%20%5C%20%5BHz%5D%7D%3D%5Cfrac%7B3%7D%7B2%7D%3D1.5%20%5C%20%5Bkm%5D)
The wavelength of these waves is 1.5 km.
A rolling friction jdisns
I think u would add them all up and then write down your answers