The question is incomplete, the complete question is shown in the image attached
Answer:
A and B
Explanation:
The electrophilic substitution of arenes yields a cation intermediate. The positive charge of the cation is delocalized over the entire ring.
The -CN group directs incoming electrophiles to the ortho/para position. The resonance structures for the chlorination of benzonitrile are shown in the question.
Recall that -CN is an electron withdrawing group. The resonance forms that destablize the carbocation intermediate are those in which the -CN group is directly attached to the carbon atom bearing the positive charge as in structures A and B.
Answer:
e) The activation energy of the reverse reaction is greater than that of the forward reaction.
Explanation:
- Activation energy is the minimum amount of energy that is required by the reactants to start a reaction.
- An exothermic reaction is a reaction that releases heat energy to the surrounding while an endothermic reactions is a reaction that absorbs heat from the surrounding.
- <em><u>In reversible reactions, when the forward reaction is exothermic it means the reverse reaction will be endothermic, therefore the reverse reaction will have a higher activation energy than the forward reaction.</u></em> The activation energy of the reverse reaction will be the sum of the enthalpy and the activation energy of the forward reaction.
Answer: A
Explanation: Mass and volume is the amount, amount doesn’t make the phase of a matter change.
The effective nuclear charge is an innate property of a specific element. It is the pull of force that an electron feels from the nucleus. It is related to the valence electron by the equation: Z* = Z-S, where Z* is the effective nuclear charge, Z is the atomic number and S is the shielding constant.
For the following elements in the choices, these are their values of Z*:
Aluminum - +12.591
Beryllium - +1.912
Hydrogen - +1
Carbon - +4
The effective nuclear charge of Boron is +3. Thus, the answers are Aluminum and Carbon.