Answer:
The answer is 12,560
Explanation:
The orbital period is the time a given cosmic question takes to finish one circle around another protest and applies in space science as a rule to planets or space rocks circling the Sun, moons circling planets, exoplanets circling different stars, or double stars. Mercury, for instance, has an orbital time of 88 days while it takes Jupiter around 11.86 years. The time of the Earth's circle is generally thought to be 365 days as timetables appear.
Answer:
There are many errors possible while titrating the acid of an unknown concentration with a base like NaOH.
Main error that leads to the error in results is misreading of the end point volume .
End point is when the reaction between the analyte and solution of known concentration has stopped .
Sometimes Burette is not straight enough to read the volume of the end point. One way to misread the volume of burette is by looking at the burette volume at an angle .
From above , volume seems to be higher. Indicators are used to indicate the color change of the reaction. In Acid-Base titrations , indicators first lighten up then changes its color.
So, error may have occurred in wrongly judging of the end point by color change of the indicator .
Rutherford used gold for his scattering experiment because gold is the most malleable metal and he wanted the thinnest layer as possible. The goldsheet used was around 1000 atoms thick. Therefore, Rutherford selected a Gold foil in his alpha scatttering experiment.
Pure Substances cannot be separated easily or, sometimes at all.
I hope this is the answer you were looking for and that it helps!! :)
Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now write the balanced chemical equation
H₂ + F₂ → 2HF
<h3>What is Ideal Gas ?</h3>
An ideal gas is a gas that obey gas laws at all temperature and pressure conditions. It have velocity and mass but do not have volume. Ideal gas is also called perfect gas. Ideal gas is a hypothetical gas.
It is expressed as:
PV = nRT
where,
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant
T = temperature
Here,
P = 1 atm [At STP]
V = 110 ml = 0.11 L
T = 273 K [At STP]
R = 0.0821 [Ideal gas constant]
Now put the values in above expression
PV = nRT
1 atm × 0.11 L = n × 0.0821 L.atm/ K. mol × 273 K

n = 0.0049 mol
<h3>How to find the concentration of resulting solution ? </h3>
To calculate the concentration of resulting solution use the expression

= 0.032 M
Thus from the above conclusion we can say that Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
Learn more about the Ideal Gas here: brainly.com/question/25290815
#SPJ4