Answer: Ammonium, when heated with aqueous base, will give off NH3 (ammonia) gas, (and depending, water vapor). This will leave the Cr2O3(s). From then on,
it is just adding or subtraction of gases or water vapor. You probably heard “Loss of electrons is Oxidation”, “Gain of Electrons is reduction”. That should help.
Explanation: This isn’t an explanation but an interesting point; Acid-Base and RedOx reactions are useful to the most complex of any Chemistry. Get this down, and Organic Chemistry will be much easier.
Answer:
Buy local and eat a more diversified diet including less meat and dairy to reduce your carbon emissions resulting from the use of fossil fuel-based fertilizers, pesticides, and gas required to produce and transport of the food you eat. Support clean energy sources.
Explanation: or
Alternatives to drivingWhen possible, walk or ride your bike in order to avoid carbon emissions completely. Carpooling and public transportation drastically reduce CO2 emissions by spreading them out over many riders.
Explanation:

Equilibrium constant of reaction = 
Concentration of NO = ![[NO]=\frac{2.69\times 10^{-2} mol}{1 L}=2.69\times 10^{-2} M](https://tex.z-dn.net/?f=%5BNO%5D%3D%5Cfrac%7B2.69%5Ctimes%2010%5E%7B-2%7D%20mol%7D%7B1%20L%7D%3D2.69%5Ctimes%2010%5E%7B-2%7D%20M)
Concentration of bromine gas = ![[Br_2]=\frac{3.85\times 10^{-2} mol}{1 L}=3.85\times 10^{-2} M](https://tex.z-dn.net/?f=%5BBr_2%5D%3D%5Cfrac%7B3.85%5Ctimes%2010%5E%7B-2%7D%20mol%7D%7B1%20L%7D%3D3.85%5Ctimes%2010%5E%7B-2%7D%20M)
Concentration of NOBr gas = ![[Br_2]=\frac{9.56\times 10^{-2} mol}{1 L}=9.56\times 10^{-2} M](https://tex.z-dn.net/?f=%5BBr_2%5D%3D%5Cfrac%7B9.56%5Ctimes%2010%5E%7B-2%7D%20mol%7D%7B1%20L%7D%3D9.56%5Ctimes%2010%5E%7B-2%7D%20M)
The reaction quotient is given as:
![Q=\frac{[NOBr]^2}{[NO]^2[Br_2]}=\frac{(9.56\times 10^{-2} M)^2}{(2.69\times 10^{-2} M)^2\times 3.85\times 10^{-2} M}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BNOBr%5D%5E2%7D%7B%5BNO%5D%5E2%5BBr_2%5D%7D%3D%5Cfrac%7B%289.56%5Ctimes%2010%5E%7B-2%7D%20M%29%5E2%7D%7B%282.69%5Ctimes%2010%5E%7B-2%7D%20M%29%5E2%5Ctimes%203.85%5Ctimes%2010%5E%7B-2%7D%20M%7D)


The reaction will go in backward direction in order to achieve an equilibrium state.
1. In order to reach equilibrium NOBr (g) must be produced. False
2. In order to reach equilibrium K must decrease. False
3. In order to reach equilibrium NO must be produced. True
4. Q. is less than K . False
5. The reaction is at equilibrium. No further reaction will occur. False
Answer:
When substances do not mix thoroughly and evenly (like sand and gravel), the mixture is said to be heterogeneous. A heterogeneous mixture consists of visibly different substances. Another example of a mixture is salt dissolved in water.
Hope it helps!
Answer:
Moles of H₂S needed = 6.2 mol
Moles of SO₂ produced = 6.2 mol
Explanation:
Given data:
Number of moles of O₂ = 9.3 mol
Moles of H₂S needed = ?
Moles of SO₂ produced = ?
Solution:
Chemical equation:
2H₂S + 3O₂ → 2SO₂ + 2H₂O
Now we will compare the moles of oxygen with H₂S.
O₂ : H₂S
3 : 2
9.3 : 2/3×9.3 = 6.2 mol
Now we will compare the moles of SO₂ with both reactant.
O₂ : SO₂
3 : 2
9.3 : 2/3×9.3 = 6.2 mol
H₂S : SO₂
2 : 2
6.2 : 6.2 mol
So 6.2 moles of SO₂ are produced.