Answer:
The probability of getting heads on the toss of a coin is 0.5. If we consider all possible outcomes of the toss of two coins as shown, there is only one outcome of the four in which both coins have come up heads, so the probability of getting heads on both coins is 0.25. The second useful rule is the Sum Rule.
I believe the answer is 0
Answer:
The 99% confidence interval of the population mean for the weights of adult elephants is between 12,475 pounds and 12,637 pounds.
Step-by-step explanation:
We have the standard deviation for the sample, so we use the t-distribution to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 10 - 1 = 9
99% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 9 degrees of freedom(y-axis) and a confidence level of . So we have T = 3.25
The margin of error is:
M = T*s = 3.25*25 = 81
In which s is the standard deviation of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 12,556 - 81 = 12,475 pounds
The upper end of the interval is the sample mean added to M. So it is 12,556 + 81 = 12,637 pounds.
The 99% confidence interval of the population mean for the weights of adult elephants is between 12,475 pounds and 12,637 pounds.
Answer:
A.
Step-by-step explanation:
you have to find the discriminant
b²-4ac for each equation
if discriminant < 0 no real solutions because will be negative under the squareroot whhan you try to find the roots
if discriminant = 0 there is only one solution
if discriminant > 0 two real solutions
for your given problems
A. discriminant =(-2)²-4*2*15 will be negative
Answer:
I can't seem to solve these but hope this information helps :)
Step-by-step explanation:
Remove any grouping symbol such as brackets and parentheses by multiplying factors.
Use the exponent rule to remove grouping if the terms are containing exponents.
Combine the like terms by addition or subtraction.
Combine the constants.