Answer:
There is an 84.97% probability that at least six wear glasses.
Step-by-step explanation:
For each adult over 50, there are only two possible outcomes. Either they wear glasses, or they do not. This means that we use the binomial probability distribution to solve this problem.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinatios of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
In this problem we have that:

What is the probability that at least six wear glasses?

There is an 84.97% probability that at least six wear glasses.
1. . D . Identity , when you odd both properties it will always to be true on both sides
A-8x+12
B-6(2x+3)
C-5(2+3x)
Answer: a) √50
b) n = 1 + 7i
Step-by-step explanation:
first, the modulus of a complex number z = a + bi is
IzI = √(a^2 + b^2)
The fact that n is complex does not mean that n doesn't has a real part, so we must write our numbers as:
m = 2 + 6i
n = a + bi
Im + nI = 3√10
Im + n I = √(a^2 + b^2 + 2^2 + 6^2)= 3√10
= √(a^2 + b^2 + 40) = 3√10
a^2 + b^2 + 40 = 3^2*10 = 9*10 = 90
a^2 + b^2 = 90 - 40 = 50
√(a^2 + b^2 ) = InI = √50
The modulus of n must be equal to the square root of 50.
now we can find any values a and b such a^2 + b^2 = 50.
for example, a = 1 and b = 7
1^2 + 7^2 = 1 + 49 = 50
Then a possible value for n is:
n = 1 + 7i