Frequency is 1 over the period. Hence, the frequency is 1/18.
Hooke's Law states that the extension is directly proportional to the force applied so:
F/x = constant
F₁/x₁ = F₂/x₂
2 / 0.02 = 1600 / x₂
x₂ = 16 m
Elastic work = 1/2 Fx
= 1/2 * 1600 * 16
= 12.8 kJ
Answer:
I believe it is B, not 100% sure though
Explanation:
Answer:c
Explanation:
Given
Alice launches with horizontal velocity 
Tom simply drops straight down from the edge
Time taken by both the person is same as they have same initial vertical velocity i.e. zero so the time taken to reach the ground is zero.
Although Alice will travel more horizontal distance compared to Tom.
Thus option c is correct
Answer:
Potential Energy = 294J, Kinetic Engergy = 48.02J
Explanation:
We have these formulas:
Potential Energy = mass * gravitational force * height (m) = 1 * 9.8 * 30 = 294(J)
Kinetic Energy = 1/2 * mass * velocity^2 = 1/2 * 1 * 9.8^2 = 48.02 (J)
As the rock falling at an acceleration of 9.8m/s^2 which means for each second, the rock increases 9.8m/s. I think we are missing time to find the instantaneous velocity, the formula is (initial displacement - final displacement)/ (initial time - final time) which will directly give the final answer for you.