Answer:
<em>faster and at a higher luminosity and temperature.</em>
Explanation:
A protostar looks like a star but its core is not yet hot enough for fusion to take place. The luminosity comes exclusively from the heating of the protostar as it contracts. Protostars are usually surrounded by dust, which blocks the light that they emit, so they are difficult to observe in the visible spectrum.
A protostar becomes a main sequence star when its core temperature exceeds 10 million K. This is the temperature needed for hydrogen fusion to operate efficiently.
Stars above about 200 solar masses (Higher mass) generate power so furiously that gravity cannot contain their internal pressure. These stars blow themselves apart and do not exist for long if at all. A protostar with less than 0.08 solar masses never reaches the 10 million K temperature needed for efficient hydrogen fusion. These result in “failed stars” called brown dwarfs which radiate mainly in the infrared and look deep red in color. They are very dim and difficult to detect, but there might be many of them, and in fact they might outnumber other stars in the universe.
That is why higher mass protostars enter the main sequence at a <em>faster and at a higher luminosity and temperature.</em>
To solve this problem it is necessary to apply the concepts related to mutual inductance in a solenoid.
This definition is described in the following equation as,

Where,
permeability of free space
Number of turns in solenoid 1
Number of turns in solenoid 2
Cross sectional area of solenoid
l = Length of the solenoid
Part A )
Our values are given as,





Substituting,



PART B) Considering that many of the variables remain unchanged in the second solenoid, such as the increase in the radius or magnetic field, we can conclude that mutual inducantia will appear the same.
Answer:
<em>B) 1.0 × 10^5 V</em>
Explanation:
<u>Electric Potential Due To Point Charges
</u>
The electric potential produced from a point charge Q at a distance r from the charge is

The total electric potential for a system of point charges is equal to the sum of their individual potentials. This is a scalar sum, so direction is not relevant.
We must compute the total electric potential in the center of the square. We need to know the distance from all the corners to the center. The diagonal of the square is

where a is the length of the side.
The distance from any corner to the center is half the diagonal, thus


The total potential is

Where V1 and V2 are produced by the +4\mu C charges and V3 and V4 are produced by the two opposite charges of
. Since all the distances are equal, and the charges producing V3 and V4 are opposite, V3 and V4 cancel each other. We only need to compute V1 or V2, since they are equal, but they won't cancel.


The total potential is


Answer:
alcohol thermometers are used rather than Mercury thermometers in very cold regions because alcohol has a lower freezing point than Mercury.
Explanation:
Answer:
(a) The resistance R of the inductor is 2480.62 Ω
(b) The inductance L of the inductor is 1.67 H
Explanation:
Given;
emf of the battery, V = 16.0 V
current at 0.940 ms = 4.86 mA
after a long time, the current becomes 6.45 mA = maximum current
Part (a) The resistance R of the inductor

Part (b) the inductance L of the inductor

where;
L is the inductance
R is the resistance of the inductor
t is time

Therefore, the inductance is 1.67 H