Answer:
The electric field always decreases.
Explanation:
The electric field due to a point charge is given by :

Where
k = electric constant
q = charge
r = distance from the charge
It is clear from the above equation that as the distance from the charge particle increases the electric field decreases. As you move away from a positive charge distribution, the electric field always decreases. Hence, the correct option is (c) "Always decreases".
Question: A loader sack of total mass
is l000 grams falls down from
the floor of a lorry 200 cm high
Calculate the workdone by the
gravity of the load.
Answer:
19.6 Joules
Explanation:
Applying
W = mgh........................ Equation 1
Where W = Workdone by gravity on the load, m = mass of the loader sack, h = height, g = acceleration due to gravity
From the question,
Given: m = 1000 grams = (1000/1000) kilogram = 1 kg, h = 200 cm = 2 m
Constant: g = 9.8 m/s²
Substitute these values into equation 1
W = (1×2×9.8)
W = 19.6 Joules
Hence the work done by gravity on the load is 19.6 Joules
Compression and rarefaction are two phenomenon occurs in longitudunal wave!
when there is denser particle gathering in that wave , there we called it compression and the rarer part of particles is rarefaction !
Explanation:
Show that the motion of a mass attached to the end of a spring is SHM
Consider a mass "m" attached to the end of an elastic spring. The other end of the spring is fixed
at the a firm support as shown in figure "a". The whole system is placed on a smooth horizontal surface.
If we displace the mass 'm' from its mean position 'O' to point "a" by applying an external force, it is displaced by '+x' to its right, there will be elastic restring force on the mass equal to F in the left side which is applied by the spring.
According to "Hook's Law
F = - Kx ---- (1)
Negative sign indicates that the elastic restoring force is opposite to the displacement.
Where K= Spring Constant
If we release mass 'm' at point 'a', it moves forward to ' O'. At point ' O' it will not stop but moves forward towards point "b" due to inertia and covers the same displacement -x. At point 'b' once again elastic restoring force 'F' acts upon it but now in the right side. In this way it continues its motion
from a to b and then b to a.
According to Newton's 2nd law of motion, force 'F' produces acceleration 'a' in the body which is given by
F = ma ---- (2)
Comparing equation (1) & (2)
ma = -kx
Here k/m is constant term, therefore ,
a = - (Constant)x
or
a a -x
This relation indicates that the acceleration of body attached to the end elastic spring is directly proportional to its displacement. Therefore its motion is Simple Harmonic Motion.
The difference in electric potential energy between the two points is

where q is the magnitude of the charge and

is the electric potential difference.
But for energy conservation, the difference in electric potential energy

between the two points is equal to the work done to move the charge between A and B:

so we have

and by substituting the numbers of the problem, we find the value of

: