1) 8 + 4 = -5 + 7
12 = 2
FALSE
2) y = -11x + 4
(0, -7): -7 = -11(0) + 4 ⇒ -7 = 0 + 4 ⇒ -7 = 4 False
(-1, -7): -7 = -11(-1) + 4 ⇒ -7 = 11 + 4 ⇒ -7 = 15 False
(1, -7): -7 = -11(1) + 4 ⇒ -7 = -11 + 4 ⇒ -7 = -7 True
(2, 26): 26 = -11(2) + 4 ⇒ 26 = -22 + 4 ⇒ 26 = -18 False
Answer: C
3) Input Output
0 0
<u> 1 </u> 3
2 <u> 6 </u>
3 9
<u> 4 </u> <u> 12 </u>
5 15
6 <u> 18 </u>
Rule: input is being added by 1, output is 3 times x
4) c = 65h
5) 2x = -6

x = -3
6) 8j - 5 + j = 67
9j - 5 = 67 <em>added like terms (8j + j)</em>
<u> +5</u> <u>+5 </u>
9j = 72

j = 8
7) y = mx + b
<u> -b</u> <u> -b </u>
y - b = mx


Answer:
t3 = 8, t5 = 14
Step-by-step explanation:
t3 = 2 + (3-1) × 3
t3 = 2 + (2) × 3
t3 = 2 + 6
t3 = 8
t5 = 2 + (5-1) × 3
t5 = 2 + (4) × 3
t5 = 2 + 12
t5 = 14
Answer:
Option (4)
Step-by-step explanation:
Given : XZ ≅ DF and ∠X ≅ ∠D
To prove : ΔXYZ ≅ ΔDEF
Statements Reasons
1). XZ ≅ DF 1). Given
2). ∠X ≅ ∠ D 2). Given
3). XY ≅ DE 3). Required information
4). ΔXYZ ≅ ΔDEF 4). By SAS property of congruence
Therefore, Option (4) will be the answer.
Answer:
The answer to your question is below
Step-by-step explanation:
a) 
Factor the numerator is a polynomial of the form x² + bx + c
s² - 3s - 28 = (s - 7)( s + 4)
Substitute

Simplify like terms
Result s + 4
b) 
Factor the numerator is a polynomial of the form x² + bx + c
c² + 5c - 24 = (c + 8)(c - 3)
Substitute

Simplify like terms c - 3
Result c - 3