1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanya [424]
3 years ago
11

How can it be so hard to drag rubber across smooth glass if friction is caused by surface roughness?​

Physics
1 answer:
jonny [76]3 years ago
3 0

Answer:

becuz of less friction of glass and more friction of rubber

You might be interested in
a dump truck travels 70mph for 3 hours, then for 20mph for another 2 hours in the same direction. what is the average speed the
Dmitry_Shevchenko [17]

Answer:

the average speed of the car is 170 mph.

Explanation:

Given;

initial speed, u = 70 mph

time of motion, t₁ = 3 hours

final speed, v = 20 mph

time of motion, t₂ = 2 hours

The average speed of the car is calculated as;

v' = \frac{70(3) - 20(2)}{3-2} \\\\v' = 170 \ mph

Therefore, the average speed of the car is 170 mph.

8 0
3 years ago
Which of the following was NOT a department in Washington's first cabinet?
Bingel [31]

Answer:

I believe its C: Secretary of War. I hope this helped :)

Explanation:

6 0
3 years ago
Read 2 more answers
A wave with a frequency of 325 Hz. is travelling at a speed of 125 m/s. What is the wavelength of this wave?
ollegr [7]

Answer:

0.385 meters

Explanation:

Just remember this very simple equation:

velocity=(wavelength)*(frequency)

I always remember it as "Velma is Waving Frantically"

So, 125=(wavelength)*(325)

Therefore, wavelength=0.385 meters!

Hope this helped!

4 0
3 years ago
Hazardous wastes are placed into categories to aid in _____.
torisob [31]
The waste that poses substantial or potential threats to public and environment health
Hazardous waste are actually defined as RCRA in 40 CFR 261 the the four hazardous traits are 
ignitability 
reactivity 
corrosivity  
toxicity 
i think its b
4 0
3 years ago
Read 2 more answers
A physics student of mass 43.0 kg is standing at the edge of the flat roof of a building, 12.0 m above the sidewalk. An unfriend
Dmitry_Shevchenko [17]

Answer:

The speed of the student just before she lands, v₂ is approximately 8.225 m/s

Explanation:

The given parameters are;

The mass of the physic student, m = 43.0 kg

The height at which the student is standing, h = 12.0 m

The radius of the wheel, r = 0.300 m

The moment of inertia of the wheel, I = 9.60 kg·m²

The initial potential energy of the female student, P.E.₁ = m·g·h₁

Where;

m = 43.0 kg

g = The acceleration due to gravity ≈ 9.81 m/s²

h = 12.0 h

∴ P.E.₁ = 43 kg × 9.81 m/s² × 12.0 m = 5061.96 J

The kinetic rotational energy of the wheel and kinetic energy of the student supporting herself from the rope she grabs and steps off the roof, K₁, is given as follows;

K_1 = \dfrac{1}{2} \cdot m \cdot v_{1}^2+\dfrac{1}{2} \cdot I \cdot \omega_{1}^2

The initial kinetic energy, 1/2·m·v₁² and the initial kinetic rotational energy, 1/2·m·ω₁² are 0

∴ K₁ = 0 + 0 = 0

The final potential energy of the student when lands. P.E.₂ = m·g·h₂ = 0

Where;

h₂ = 0 m

The final kinetic energy, K₂, of the wheel and student is give as follows;

K_2 = \dfrac{1}{2} \cdot m \cdot v_{2}^2+\dfrac{1}{2} \cdot I \cdot \omega_{2}^2

Where;

v₂ = The speed of the student just before she lands

ω₂ = The angular velocity of the wheel just before she lands

By the conservation of energy, we have;

P.E.₁ + K₁ = P.E.₂ + K₂

∴ m·g·h₁ + \dfrac{1}{2} \cdot m \cdot v_{1}^2+\dfrac{1}{2} \cdot I \cdot \omega_{1}^2 = m·g·h₂ + \dfrac{1}{2} \cdot m \cdot v_{2}^2+\dfrac{1}{2} \cdot I \cdot \omega_{2}^2

Where;

ω₂ = v₂/r

∴ 5061.96 J + 0 = 0 + \dfrac{1}{2} \times 43.0 \, kg \times v_{2}^2+\dfrac{1}{2} \times 9.60 \, kg\cdot m^2 \cdot \left (\dfrac{v_2}{0.300 \, m} }\right ) ^2

5,061.96 J = 21.5 kg × v₂² + 53.\overline 3 kg × v₂² = 21.5 kg × v₂² + 160/3 kg × v₂²

v₂² = 5,061.96 J/(21.5 kg + 160/3 kg) ≈ 67.643118 m²/s²

v₂ ≈ √(67.643118 m²/s²) ≈ 8.22454363 m/s

The speed of the student just before she lands, v₂ ≈ 8.225 m/s.

5 0
3 years ago
Other questions:
  • A steel bridge is 1000 m long at -20°C in winter. What is the change in length when the temperature rises to 40°C in summer? The
    13·1 answer
  • A light-year is the distance that light travels in one year. The speed of light is 3.00 × 108 m/s. How many miles are there in o
    12·1 answer
  • You throw a rock straight up and find that it returns to your hand 3.40 s after it left your hand. Neglect air resistance. What
    14·1 answer
  • Could an<br> average star, such as our<br> sun, become a neutron star?<br> Explain your answer.
    6·1 answer
  • Anyone play Among US?
    15·2 answers
  • Can anyone help me to explain theory of relativity??? ​
    13·1 answer
  • When the net force on an object is zero, what do we know about the motion of that object
    9·1 answer
  • How do you work out Potential Difference??? <br> Please can you make it simple :) <br> Thanks.
    13·1 answer
  • A train travels 190km in 3.0 hours and then 120 km in 2.0 hours. What is it’s average speed ?
    7·1 answer
  • Two force of 20N and 40N act at a
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!