Answer:
1.25 m
Explanation:
From the question given above, the following data were obtained:
Force ratio = 2.5
Distance of load from the fulcrum = 0.5 m
Distance of effort =.?
The distance of the effort from the fulcrum can be obtained as illustrated below:
Force ratio = Distance of effort / Distance of load
2.5 = Distance of effort / 0.5
Cross multiply
Distance of effort = 2.5 × 0.5
Distance of effort = 1.25 m
Therefore, the distance of the effort from the fulcrum is 1.25 m
Answer:
The maximum potential difference is 186.02 x 10¹⁵ V
Explanation:
formula for calculating maximum potential difference

where;
Ke is coulomb's constant = 8.99 x 10⁹ Nm²/c²
k is the dielectric constant = 2.3
b is the outer radius of the conductor = 3 mm
a is the inner radius of the conductor = 0.8 mm
λ is the linear charge density = 18 x 10⁶ V/m
Substitute in these values in the above equation;

Therefore, the maximum potential difference this cable can withstand is 186.02 x 10¹⁵ V
Answer;
Motion: A body is said to be in motion if it changes its position with respect to its surroundings.
Explanation:
Rest and motion are the relative terms because they depend on the observer's frame of reference. So if two different observers are not at rest with respect to each other, then they too get different results when they observe the motion or rest of a body .
one example for each. Rest: If a body does not change its position with respect to its surroundings, the body is said to be at rest. ... Motion: A body is said to be in motion if it changes its position with respect to its surroundings.
Answer:
what
Explanation:
Racket sports include tennis, badminton, squash or any other sport where you use rackets to hit a ball or shuttlecock to play. They can be played competitively or just for fun and are a great form of physical activity.