Answer:
Frictional force increases with the increase in the roughness of the surface.
Explanation:
You will see that the rougher the surface, the greater the wear and tear.
Answer:
Mass of Jupiter = 4.173×10^15kg
Explanation:
Using Kepler's 3rd law, it states that the orbital period T is related to the distance,r as:
T^2 = GM/4 pi × r^3
Where G = universal gravitational constant
r = radius
M = masd of jupiter
Rearranging the formular to make M the subject of formular
T^2 × 4 pi = G M × r^3
(T^2 × 4 pi) / (G× r^3) = M
(1.24^2 × 4 × 3.142) /(6.672×10^-11)(4.11×10^8)^3
M = 19.32 /6.672×10^-11)(4.11×10^8)^3
M = 19.32 / 4.63 ×10^15
M = 4.173×10^15kg
Answer:
v₂ = 0.56 m / s
Explanation:
This exercise can be done using Bernoulli's equation
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
Where points 1 and 2 are on the surface of the glass and the top of the straw
The pressure at the two points is the same because they are open to the atmosphere, if we assume that the surface of the vessel is much sea that the area of the straw the velocity of the surface of the vessel is almost zero v₁ = 0
The difference in height between the level of the glass and the straw is constant and equal to 1.6 cm = 1.6 10⁻² m
We substitute in the equation
+ ρ g y₁ =
+ ½ ρ v₂² + ρ g y₂
½ v₂² = g (y₂-y₁)
v₂ = √ 2 g (y₂-y₁)
Let's calculate
v₂ = √ (2 9.8 1.6 10⁻²)
v₂ = 0.56 m / s
The main (and only) purpose of the turbine in the turbo jet engine is to drive the air compressor. The turbojet engine works by compressing the air using an inlet and a compressor, then mixing the fuel with the compressed air, then passing the mixture to the combustor, then passing the high pressure air through a turbine and a nozzle.