9 because you divide 36.54 by 4.06 i’m pretty sure
Answer: 2
Step-by-step explanation:
Answer:
The probability that there are 2 or more fraudulent online retail orders in the sample is 0.483.
Step-by-step explanation:
We can model this with a binomial random variable, with sample size n=20 and probability of success p=0.08.
The probability of k online retail orders that turn out to be fraudulent in the sample is:

We have to calculate the probability that 2 or more online retail orders that turn out to be fraudulent. This can be calculated as:
![P(x\geq2)=1-[P(x=0)+P(x=1)]\\\\\\P(x=0)=\dbinom{20}{0}\cdot0.08^{0}\cdot0.92^{20}=1\cdot1\cdot0.189=0.189\\\\\\P(x=1)=\dbinom{20}{1}\cdot0.08^{1}\cdot0.92^{19}=20\cdot0.08\cdot0.205=0.328\\\\\\\\P(x\geq2)=1-[0.189+0.328]\\\\P(x\geq2)=1-0.517=0.483](https://tex.z-dn.net/?f=P%28x%5Cgeq2%29%3D1-%5BP%28x%3D0%29%2BP%28x%3D1%29%5D%5C%5C%5C%5C%5C%5CP%28x%3D0%29%3D%5Cdbinom%7B20%7D%7B0%7D%5Ccdot0.08%5E%7B0%7D%5Ccdot0.92%5E%7B20%7D%3D1%5Ccdot1%5Ccdot0.189%3D0.189%5C%5C%5C%5C%5C%5CP%28x%3D1%29%3D%5Cdbinom%7B20%7D%7B1%7D%5Ccdot0.08%5E%7B1%7D%5Ccdot0.92%5E%7B19%7D%3D20%5Ccdot0.08%5Ccdot0.205%3D0.328%5C%5C%5C%5C%5C%5C%5C%5CP%28x%5Cgeq2%29%3D1-%5B0.189%2B0.328%5D%5C%5C%5C%5CP%28x%5Cgeq2%29%3D1-0.517%3D0.483)
The probability that there are 2 or more fraudulent online retail orders in the sample is 0.483.
Answer:
6 tables.
Step-by-step explanation:
If he has 15 shelves, we can put the overall number of books off to the side for a moment. First calculate how many books he COULD put onto shelves. This would be 7*15, since each of fifteen shelves can hold 7 books. Counting by fifteens or using a calculator allows us to see that the shelves can hold 105 books.
Going back to the original number of books, we subtract 105 from the original value. The equation at this point is 231 - 105. The result is 126 books left to put on top of tables. But we're not done yet!
Since a table can hold 25 books, we need to divide the remaining number of books by 25. That would be 126/25. Doing this gives us 5 tables we would need, plus one book let over. Since we've run out of shelves, we MUST use another table just for the final book. That's 5+1, or 6 tables. Let's not forget to label our answer.