The sum of the given series can be found by simplification of the number
of terms in the series.
- A is approximately <u>2020.022</u>
Reasons:
The given sequence is presented as follows;
A = 1011 + 337 + 337/2 + 1011/10 + 337/5 + ... + 1/2021
Therefore;
The n + 1 th term of the sequence, 1, 3, 6, 10, 15, ..., 2021 is given as follows;
Therefore, for the last term we have;
2 × 2043231 = n² + 3·n + 2
Which gives;
n² + 3·n + 2 - 2 × 2043231 = n² + 3·n - 4086460 = 0
Which gives, the number of terms, n = 2020


Which gives;


Learn more about the sum of a series here:
brainly.com/question/190295
Answer:
C
btw Hannah is this one fine? sorry i couldn't remember which question was the chat and sorry i couldn't respond right away im not the person who is on late in the day
Step-by-step explanation:
Answer:
28
Step-by-step explanation:
-2 × -7 = 14
14 × 2 = 28
thats the correct answer
Answer:
a. x = -9 or x = -2
b. -5(x - 4)
c. x = -3 or x = 5
d. x = ±7
Step-by-step explanation:
a. First person;
y = x² + 11x + 18
y = x² + 9x + 2x + 18
y = x(x + 9) + 2(x + 9)
y = (x + 9)(x + 2)
y = x = -9 or x = -2
b. Second person;
y = -5x + 20
The common factor is 5.
y = -5(x - 4)
c. Third person;
y = x² - 2x - 15
y = x² - 5x + 3x - 15
y = x(x - 5) + 3(x - 5)
y = (x + 3)(x - 5)
y = x = -3 or x = 5
d. Fourth person;
y = x² - 49
Applying the difference of squares formula;
(a² - b²) = (a - b)(a + b)
y = x² - 49 = x² - 7² = (x - 7)(x + 7)
y = (x - 7)(x + 7)
y = x = ±7