The question is incomplete. The complete question is :
A plate of uniform areal density
is bounded by the four curves:




where x and y are in meters. Point
has coordinates
and
. What is the moment of inertia
of the plate about the point
?
Solution :
Given :




and
,
,
.
So,

, 



![$I=2 \int_1^2 \left( \left[ (x-1)^2y+\frac{(y+2)^3}{3}\right]_{-x^2+4x-5}^{x^2+4x+6}\right) \ dx$](https://tex.z-dn.net/?f=%24I%3D2%20%5Cint_1%5E2%20%5Cleft%28%20%5Cleft%5B%20%28x-1%29%5E2y%2B%5Cfrac%7B%28y%2B2%29%5E3%7D%7B3%7D%5Cright%5D_%7B-x%5E2%2B4x-5%7D%5E%7Bx%5E2%2B4x%2B6%7D%5Cright%29%20%5C%20dx%24)



So the moment of inertia is
.
<span>Th find the average speed of a trip we need to dived the total distance by the total time.
Let's find the total distance d.
d = (300 mi/h)(2.00 h) + 750 miles
d = 600 miles + 750 miles
d = 1350 miles
The total distance is 1350 miles
Let's find the total time t.
t = 2.00 hours + (750 mi / 250 mi/h)
t = 2.00 hours + 3.00 hours
t = 5.00 hours
The total time of the trip is 5.00 hours.
We can find the average speed.
d / t = 1350 miles / 5.00 hours
d / t = 270 miles/ hour
The average speed of the trip is 270 mi/h
(Note that the direction does not matter when we find the average speed.)</span>
Answer:
The true course:
north of east
The ground speed of the plane: 96.68 m/s
Explanation:
Given:
= velocity of wind = 
= velocity of plane in still air = 
Assume:
= resultant velocity of the plane
= direction of the plane with the east
Since the resultant is the vector addition of all the vectors. So, the resultant velocity of the plane will be the vector sum of the wind velocity and the plane velocity in still air.

Let us find the direction of this resultant velocity with respect to east direction:

This means the the true course of the plane is in the direction of
north of east.
The ground speed will be the magnitude of the resultant velocity of the plane.

Hence, the ground speed of the plane is 96.68 km/h.