Answer:
1.02 m/s²
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
Acceleration can simply be defined as the change of velocity with time. Mathematically, it can be expressed as:
a = (v – u) / t
Where:
a is the acceleration.
v is the final velocity.
u is the initial velocity.
t is the time.
With the above formula, we can obtain the acceleration of the car as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
a = (v – u) / t
a = (6.6 – 0) / 6.5
a = 6.6 / 6.5
a = 1.02 m/s²
Therefore, the acceleration of the car is 1.02 m/s²
Answer:
1270 J
Explanation:
Recall that the mechanical energy of a system is the addition of the Potential energy and the Kinetic energy at any given time.
As the skier descends, potential energy is converted into kinetic energy, but the total mechanical energy should remain the same.
We see that it is not the case, so that difference is what has gone into thermal energy; 19500 J - 18230 J = 1270 J
This is the process of changing the shape of the eye lens to focus on near or distant objects.
Answer:
Equal
Explanation:
The impulse theorem states that the impulse exerted on each cart is equal to the change in momentum of the cart:

where
I is the impulse
pf is the final momentum
pi is the initial momentum
The impulse is equal to the product between the force applied and the contact time:

In this case, the force applied to the two carts (F) is the same, and the contact time (
) is the same as well. Therefore, the impulse exerted on the two carts is the same.
Moreover, the initial momentum of the two carts is also the same (zero, because they start from rest:
). So the formula becomes

And since I is the same for the two carts, the final momentum (
) will also be equal.