Answer:
The empirical formula is P2O5 (option B)
Explanation:
An empirical formula does not necessarily represent the actual numbers of atoms present in a molecule of a compound; it represents only the ratio between those numbers.
The actual numbers of atoms of each element that occur in the smallest freely existing unit or molecule of the compound is expressed by the molecular formula of the compound.
The molecular formula of a compound may be the empirical formula, or it may be a multiple of the empirical formula.
If the molecular formula is P4O10, this means for each for P-atoms we have 10-O atoms this is a ratio 4:10 or 1: 2.5
To find the empirical formula we divide the molecular formula by 2 what will give us P2O5
For each 2 P atoms we have 5 O-atoms. This is a ratio 1: 2.5
This is the simpliest form for the compound P4O10.
The empirical formula is P2O5 (option B)
Answer:
The correct option is A
Explanation:
An independent variable is <u>a variable that is intentionally altered (directly or indirectly) and is not dependent on another variable</u> in the course of an experiment. Unlike the independent variable, the dependent variable depends or is presumed to depend on the altered independent variables.
From the explanation above, it can be deduced that the concentration of the catalase is the independent variable as it was intentionally altered (by using different concentrations) in the course of the experiment. The amount of oxygen given off is the dependent variable here
Answer:
K2S(aq) + BaCl2(aq) = 2KCl(aq) + BaS(s)
In the image attached, it is explained how the solution is balanced.
Answer:
A decrease in entropy is balanced by a large increase in the entropy of the surrounding water molecules.
Explanation:
Water's ability to dissolve a wide variety of molecules is important, but more important is the hydrophobic effect, which drives the aggregation of hydrophobic molecules and plays a role in the folding of proteins and formation of lipid-bilayers.
Entropy is a measure of disorder of a system. Forcing water to be ordered decreases entropy, a very unfavorable situation. Water has the ability to force hydrophobic molecules away causing their aggregation. Water gains entropy when the fatty acids (hydrophobic) are forced into the lipid-bilayer. Thus, a decrease in entropy is balanced by a large increase in the entropy of the surrounding water molecules.
Answer:
Oxygen is in group 16/VIA, which is called the chalcogens, and members of the same group have similar properties. Sulfur and selenium are the next two elements in the group, and they react with hydrogen gas (H2) in a manner similar to oxygen.
Explanation: