Answer:
(a) 17,178 mg/m3
(b) 11,625 mg/m3
Explanation:
The concentration of CO in mg/m3 can be calculated as

For standard conditions (1 atm and 25°C), P/RT is 0.0409.
Concentration of 1.5% percent by volume of CO is equivalent to 1.5*10,000 ppm= 15,000 ppm CO.
The molecular weigth of CO is 28 g/mol.
(1) For 25°C and 1 atm conditions

(b) For 200°C and 1.1 atm,

Then the concentration in mg/m3 is

Answer:
It is an example of coupling an exogenic reaction to an endogenic reaction.
Explanation:
The endergonic reaction is typically being pushed by coupling it to strongly exergonic reaction. This is in most cases via shared intermediates. Most chemical reactions are endergonic in nature. In other word, the are not spontaneous (i.e ΔG>0). Energy must also be applied externally to initiate the reactions. The reactions can also be coupled to exergonic reactions (with ΔG<0) to initiate them through a process known as share intermediate. Because Gibbs Energy can be summed up (i.e is a state function), the combined ΔG of the coupled reaction will be thermodynamically favorable. The decomposition of calcium carbonate is a typical example.
Mole ratio:
<span> MgCl</span>₂<span> + 2 KOH = Mg(OH)</span>₂<span> + 2 KCl
</span>
1 mole MgCl₂ -------------- 1 mole Mg(OH)₂
Answer B
hope this helps!
Answer:Protons, neutrons, and electrons are the three main subatomic particles found in an atom. Protons have a positive (+) charge. An easy way to remember this is to remember that both proton and positive start with the letter "P." Neutrons have no electrical charge.
Explanation:
Answer:
According to the proton theory of acids and bases by J. Brønsted and T. Lowry, the acid is<u> proton donor</u>.
Explanation:
According to the Bronsted lowry concept an acid is substance that gives protons or hydrogen ion while,
Base is substance that accept hydrogen ion or proton.
Consider the following example:
NH₃ + HCl → NH₄⁺ + Cl⁻
In this example HCl is Bronsted lowry acid it gives H⁺ while ammonia is Bronsted lowry base because it accept H⁺.
This also gives the concept of conjugate acid and base. In given example Cl⁻ is conjugate base of HCl while NH₄⁺ is conjugate acid of ammonia.