<h3>
Answer:</h3>
2.624 g
<h3>
Explanation:</h3>
The equation for the reaction is given as;
- CuSO₄(aq) + 2NaOH(aq) → Cu(OH)₂(s) + Na₂SO₄(aq)
- Volume of CuSO₄ as 46.0 mL;
- Molarity of CuSO₄ as 0.584 M
We are required to calculate the mass of Cu(OH)₂ precipitated
- We are going to use the following steps;
<h3>Step 1: Calculate the number of moles of CuSO₄ used</h3>
Molarity = Number of moles ÷ Volume
To get the number of moles;
Moles = Molarity × volume
= 0.584 M × 0.046 L
= 0.0269 moles
<h3>
Step 2: Calculate the number of moles of Cu(OH)₂ produced </h3>
- From the equation 1 mole of CuSO₄ reacts to give out 1 mole of Cu(OH)₂
- Therefore; Mole ratio of CuSO₄ to Cu(OH)₂ is 1 : 1.
Thus, Moles of CuSO₄ = Moles of Cu(OH)₂
Hence, moles of Cu(OH)₂ = 0.0269 moles
<h3>
Step 3: Calculate the mass of Cu(OH)₂</h3>
To get mass we multiply the number of moles with the molar mass.
Mass = Moles × Molar mass
Molar mass of Cu(OH)₂ is 97.561 g/mol
Therefore;
Mass of Cu(OH)₂ = 0.0269 moles × 97.561 g/mol
= 2.624 g
Thus, the mass of Cu(OH)₂ that will precipitate is 2.624 g
They are the elements from scandium to copernicium. The elements between group 2 and group 3
Answer:
A
Explanation:
The strength of the gravitational force between two objects depends on mass and distance. The object with the greatest mass would be the car.
<span>The </span>octet rule<span> is a chemical </span>rule<span> of thumb that reflects observation that atoms of main-group elements tend to combine in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas.
Hope this helps</span>
Answer:
30 cm³
Explanation:
Step 1: Given data
- Density of aluminum (ρ): 2.7 g/cm³
- Mass of aluminum (m): 81 g
- Volume occupied by aluminum (V): ?
Step 2: Calculate the volume occupied by aluminum
The density of aluminum is equal to its mass divided by its volume.
ρ = m/V
V = m/ρ
V = 81 g / 2.7 g/cm³
V = 30 cm³