No, work is not done whenever you hold a heavy object for a long time
<h3>What is work done ?</h3>
The result of a force's displacement and its component of force exerted by the object in the direction of displacement is what is known as the force's work. When we push a block with some force, the body moves quickly and work is completed.
- No work, as that term is used here, is done until the object is moved in some way and a component of the force travels along the path that the object is moved. Because there is no displacement when holding a heavy object still, energy is not transferred to it.
Learn more about Work done here:
brainly.com/question/25573309
#SPJ4
Answer:
kf = 1.16 x 10¹⁸
Explanation:
Step 1: [Ni(H₂O)₆]²⁺ + 1en → [Ni(H₂O)₄(en)]²⁺ ΔG°1 = -42.9 kJmol⁻¹
Step 2: [Ni(H₂O)₄(en)]²⁺ + 1en → [Ni(H₂O)₂(en)₂]²⁺ ΔG°2 = -35.8 kJmol⁻¹
Step 3: [Ni(H₂O)₂(en)₂]²⁺ + 1en → [Ni(en)₃]²⁺ ΔG°3 = -24.3 kJmol⁻¹
________________________________________________________
Overall reaction: [Ni(H₂O)₆]²⁺ + 3en → [Ni(en)₃]²⁺ ΔG°r
ΔG°r = ΔG°1 + ΔG°2 + ΔG°3
ΔG°r = -42.9 - 35.8 - 24.3
ΔG°r = -103.0 kJmol⁻¹
ΔG°r = -RTlnKf
-103,000 Jmol⁻¹ = - 8.31 J.K⁻¹mol⁻¹ x 298 K x lnKf
kf = e ^(-103,000/-8.31x298)
kf = e ^41.59
kf = 1.16 x 10¹⁸
The concentration of diluted solution is 0.16 M
<u>Explanation:</u>
As, the number of moles of diluted solution and concentrated solution will be same.
So, the equation used to calculate concentration will be:

where,
are the molarity and volume of the concentrated HCl solution
are the molarity and volume of diluted HCl solution
We are given:

Putting values in above equation, we get:

Hence, the concentration of diluted solution is 0.16 M
the correct answer is.. ill tell you when i search it up gimme 2 seconds
<span>0.6 = mass/1.2 </span>
<span>mass = 0.6 x 1.2 </span>
<span>= 0.72 g </span>