You just cross multiply and then simplify
Answer:
the slope or rate of change is 8 over 6 or 4 over 3 4/3
In order to reduce ANY fraction to lowest terms, find any common factors
of the numerator and denominator, and divide them both by it. If they still
have a common factor, then divide them by it again. Eventually, they won't
have any common factor except ' 1 ', and then you'll know that the fraction is
in lowest terms.
Do 15 and 40 have any common factors ?
Let's see . . .
The factors of 15 are 1, 3, <em>5</em>, and 15 .
The factors of 40 are 1, 2, 4,<em> 5</em>, 8, 10, 20, and 40 .
Ah hah ! Do you see that ' <em>5</em> ' on both lists ? That's a common factor.
So 15/40 is NOT in lowest terms.
Divide the numerator and denominator both by 5 :
15 / 40 =<em> 3 / 8</em>
3 and 8 don't have any common factor except ' 1 '.
So 3/8 is the same number as 15/40, but in lowest terms.
Answer:
On occasions you will come across two or more unknown quantities, and two or more equations
relating them. These are called simultaneous equations and when asked to solve them you
must find values of the unknowns which satisfy all the given equations at the same time.
Step-by-step explanation:
1. The solution of a pair of simultaneous equations
The solution of the pair of simultaneous equations
3x + 2y = 36, and 5x + 4y = 64
is x = 8 and y = 6. This is easily verified by substituting these values into the left-hand sides
to obtain the values on the right. So x = 8, y = 6 satisfy the simultaneous equations.
2. Solving a pair of simultaneous equations
There are many ways of solving simultaneous equations. Perhaps the simplest way is elimination. This is a process which involves removing or eliminating one of the unknowns to leave a
single equation which involves the other unknown. The method is best illustrated by example.
Example
Solve the simultaneous equations 3x + 2y = 36 (1)
5x + 4y = 64 (2) .
Solution
Notice that if we multiply both sides of the first equation by 2 we obtain an equivalent equation
6x + 4y = 72 (3)
Now, if equation (2) is subtracted from equation (3) the terms involving y will be eliminated:
6x + 4y = 72 − (3)
5x + 4y = 64 (2)
x + 0y = 8