Answer:
b: Neither atoms will have a full valence shell
Explanation:
I think sooo
This is not a question kid
Answer:
1.16 moles CO₂
Explanation:
To find the moles of CO₂, you need to (1) convert grams C₈H₁₈ to moles (via the molar mass) and then (2) convert moles C₈H₁₈ to moles CO₂ (via the mole-to-mole ratio from equation coefficients). It is important that the conversions/ratios are arranged in a way that allows for the cancellation of units. The final answer should have 3 significant figures like the given value.
Molar Mass (C₈H₁₈): 8(12.011 g/mol) + 18(1.008 g/mol)
Molar Mass (C₈H₁₈): 114.232 g/mol
2 C₈H₁₈ + 25 O₂ -----> 16 CO₂ + 18 H₂O
^ ^
16.6 g C₈H₁₈ 1 mole 16 moles CO₂
-------------------- x ----------------- x ------------------------- = 1.16 moles CO₂
114.232 g 2 moles C₈H₁₈
Answer:- A) 1 mole of Fe and 1.5 moles of
.
Solution:- The balanced equation is:

From balanced equation, there is 1:3 mol ratio between
and CO, From given data, 3 moles of
and 1.5 moles of CO are taken for the reaction. CO is the limiting reactant as it's moles are less than the other reactant and which is also clear from the mole ratio. We could do the calculations also to support this. Let's calculate the moles of CO required to react completely with given 3 moles of
.

= 9 mol CO
So, from calculations, 9 moles of CO are required to react completely with 3 moles of Iron(III)oxide but only 1.5 moles of CO are available. Hence, CO is the limiting reactant and the product moles are calculated from this as:

= 1 mol Fe

= 1.5 mol 
So, the correct choice is A) 1 mole of Fe and 1.5 moles of
.